The Effect of Subglottic Stenosis Severity on Vocal Fold Vibration and Voice Production in Realistic Laryngeal and Airway Geometries Using Fluid–Structure–Acoustics Interaction Simulation
Abstract
:1. Introduction
2. Methods
2.1. Governing Equations
- Incompressible Navier–Stokes equations:
- Linearized perturbed compressible equations (LPCE):
2.2. Numerical Algorithms
2.3. The Subject-Specific Model
2.4. Computational Domain and Boundary Conditions
3. Results and Discussion
3.1. Baseline Case
3.1.1. Baseline Case: Vocal Fold Vibration and Glottal Flow Dynamics
3.1.2. Baseline Case: Acoustics
3.2. SGS Cases
3.2.1. SGS Cases: Model
3.2.2. SGS Cases: Vocal Fold Vibration and Glottal Flow Dynamics
3.2.3. SGS Cases: Acoustics
3.2.4. SGS Cases: Underlying Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almanzar, A.; Danckers, M. Laryngotracheal Stenosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Quiney, R.E.; Gould, S.J. Subglottic stenosis: A clinicopathological study. Clin. Otolaryngol. 1985, 10, 315–327. [Google Scholar] [CrossRef]
- Garnett, J.D.; Meyers, A.D. Subglottic stenosis in adults. In Emedicine. Medscape Otolaryngology and Facial Plastic Surgery; WebMD LLC: New York, NY, USA, 2018. [Google Scholar]
- Giudice, M.; Piazza, C.; Foccoli, P.; Toninelli, C.; Cavaliere, S.; Peretti, G. Idiopathic subglottic stenosis: Management by endoscopic and open-neck surgery in a series of 30 patients. Eur. Arch. Otorhinolaryngol. 2003, 260, 235–238. [Google Scholar] [CrossRef]
- Poetker, D.M.; Ettema, S.L.; Blumin, J.H.; Toohill, R.J.; Merati, A.L. Association of airway abnormalities and risk factors in 37 subglottic stenosis patients. Otolaryngol. Head Neck Surg. 2005, 135, 434–437. [Google Scholar] [CrossRef]
- Axtell, A.L.; Mathisen, D.J. Idiopathic subglottic stenosis: Techniques and results. Ann. Cardiothorac. Surg. 2018, 7, 299–305. [Google Scholar] [CrossRef]
- Cotton, R.T.; Myer, C.M., III. Contemporary surgical management of laryngeal stenosis in children. Am. J. Otolaryngol. 1984, 5, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Myer, C.M.; O’Connor, D.M.; Cotton, R.T. Proposed grading system for subglottic stenosis based on endotracheal tube sizes. Ann. Otol. Rhinol. Laryngol. 1994, 103, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.E.; Marsh, J.H.; Cotton, R.T.; Myer, C.M. Voice problems after pediatric laryngotracheal reconstruction: Videolaryngostroboscopic, acoustic, and perceptual assessment. Int. J. Pediatr. Otorhinolaryngol. 1993, 25, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.E.; Roy, N.; Stoddard, K.; Barton, M. How does cricotracheal resection affect the female voice. Ann. Otol. Rhinol. Laryngol. 2008, 117, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Herrington, H.C.; Weber, S.M.; Andersen, P.E. Modern Management of Laryngotracheal Stenosis. Laryngoscope 2006, 116, 1553–1557. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.; Hoeve, H.; Monnier, P. Paediatric laryngotracheal stenosis: A consensus paper from three European centres. Eur. Arch. Otorhinolaryngol. 2003, 260, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.L.; Thomson, S.L. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model. J. Fluids Struct. 2013, 38, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Bodaghi, D.; Xue, Q.; Zheng, X.; Thomson, S. Effect of subglottic stenosis on vocal fold vibration and voice production using fluid–structure–acoustics interaction simulation. Appl. Sci. 2021, 11, 1221. [Google Scholar] [CrossRef]
- Hilton, B.A.; Thomson, S.L. Aerodynamic-induced Effects of Artificial Subglottic Stenosis on Vocal Fold Model Phonatory Response. J. Voice 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Zheng, X.; Mittal, R.; Bielamowicz, S. Subject-specific computational modeling of human phonation. J. Acoust. Soc. Am. 2014, 135, 1445–1456. [Google Scholar] [CrossRef]
- Becker, S.; Kniesburges, S.; Müller, S.; Delgado, A.; Link, G.; Kaltenbacher, M.; Döllinger, M. Flow-structure-acoustic interaction in a human voice model. J. Acoust. Soc. Am. 2009, 125, 1351–1361. [Google Scholar] [CrossRef] [PubMed]
- Falk, S.; Kniesburges, S.; Schoder, S.; Jakubaß, B.; Maurerlehner, P.; Echternach, M.; Kaltenbacher, M.; Döllinger, M. 3D-FV-FE aeroacoustic larynx model for investigation of functional based voice disorders. Front. Physiol. 2021, 12, 616985. [Google Scholar] [CrossRef] [PubMed]
- Yoshinaga, T.; Arai, T.; Inaam, R.; Yokoyama, H.; Iida, A. A fully coupled fluid–structure–acoustic interaction simulation on reed-type artificial vocal fold. Appl. Acoust. 2021, 184, 108339. [Google Scholar] [CrossRef]
- Valášek, J.; Sváček, P. Aeroacoustic simulation of human phonation based on the flow-induced vocal fold vibrations including their contact. Adv. Eng. Softw. 2024, 194, 103652. [Google Scholar] [CrossRef]
- Feistauer, M.; Sváček, P.; Horáček, J. Numerical simulation of fluid–structure interaction problems with applications to flow in vocal folds. In Fluid-Structure Interaction and Biomedical Applications; Galdi, G.P., Nečasová, Š., Eds.; Springer: Basel, Switzerland, 2014; pp. 321–393. [Google Scholar]
- Valášek, J.; Sváček, P.; Horáček, J. Fluid–structure-acoustic interaction problem in modelling of human vocal folds vibration. In Proceedings of the Conference Algoritmy 2020, Podbanské, Slovakia, 13–18 September 2020; pp. 81–90. [Google Scholar]
- Seo, J.H.; Moon, Y.J. Linearized perturbed compressible equations for low Mach number aeroacoustics. J. Comput. Phys. 2006, 218, 702–719. [Google Scholar] [CrossRef]
- Bodaghi, D.; Jiang, W.; Xue, Q.; Zheng, X. Effect of Supraglottal Acoustics on Fluid–Structure Interaction During Human Voice Production. J. Biomech. Eng. 2021, 143, 041010. [Google Scholar] [CrossRef] [PubMed]
- Van Kan, J.J.I.M. A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 1986, 7, 870–891. [Google Scholar] [CrossRef]
- Seo, J.H.; Mittal, R. A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. J. Comput. Phys. 2011, 230, 1000–1019. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; Von Loebbecke, A. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 2008, 227, 4825–4852. [Google Scholar] [CrossRef]
- Zheng, X. Biomechanical Modeling of Glottal Aerodynamics and Vocal Fold Vibration during Phonation. Ph.D. Thesis, The George Washington University, Washington, DC, USA, 2009. [Google Scholar]
- Zheng, X.; Xue, Q.; Mittal, R.; Beilamowicz, S. A Coupled Sharp-Interface Immersed Boundary-Finite-Element Method for Flow-Structure Interaction With Application to Human Phonation. J. Biomech. Eng. 2010, 132, 111007. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zheng, X.; Xue, Q. Computational Modeling of Fluid–Structure–Acoustics Interaction during Voice Production. Front. Bioeng. Biotechnol. 2017, 5, 7. [Google Scholar] [CrossRef]
- Jiang, W.; Farbos de Luzan, C.; Wang, X.; Oren, L.; Khosla, S.M.; Xue, Q.; Zheng, X. Computational modeling of voice production using excised canine larynx. J. Biomech. Eng. 2022, 144, 021003. [Google Scholar] [CrossRef] [PubMed]
- Oren, L.; Dembinski, D.; Gutmark, E.; Khosla, S. Characterization of the vocal fold vertical stiffness in a canine model. J. Voice 2014, 28, 297–304. [Google Scholar] [CrossRef]
- Palo, P.; Aalto, D.; Aaltonen, O.; Happonen, R.P.; Malinen, J.; Saunavaara, J.; Vainio, M. Articulating finnish vowels: Results from MRI and sound data. Linguist. Uralica 2012, 48, 194–199. [Google Scholar] [CrossRef]
- Edgar, N.; Visbal, M. A General Buffer Zone-type Non-Reflecting Boundary Condition for Computational Aeroacoustics. In Proceedings of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, Hilton Head, SC, USA, 12–14 May 2003. [Google Scholar]
- Titze, I.R. Principles of Voice Production, 2nd ed.; National Centre for Voice and Speech: Iowa City, IA, USA, 2000. [Google Scholar]
- Zheng, X.; Mittal, R.; Xue, Q.; Bielamowicz, S. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model. J. Acoust. Soc. Am. 2011, 130, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Titze, I.R. Theoretical analysis of maximum flow declination rate versus maximum area declination rate in phonation. J. Voice 2006, 20, 401–404. [Google Scholar] [CrossRef]
- Xue, Q.; Mittal, R.; Zheng, X.; Bielamowicz, S. Computational modeling of phonatory dynamics in a tubular three-dimensional model of the human larynx. J. Acoust. Soc. Am. 2012, 132, 1602–1613. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.J.; Titze, I.R. Measurement of vocal fold intraglottal pressure and impact stress. J. Voice 1994, 8, 132–144. [Google Scholar] [CrossRef]
- Sundberg, J.; Scherer, R.; Hess, M.; Müller, F.; Granqvist, S. Subglottal pressure oscillations accompanying phonation. J. Voice 2013, 27, 411–421. [Google Scholar] [CrossRef]
- Story, B.H. Mechanisms of voice production. In The Handbook of Speech Production; Redford, M.A., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 34–58. [Google Scholar]
- Stevens, K.N. Acoustic Phonetics; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Schickhofer, L.; Malinen, J.; Mihaescu, M. Compressible flow simulations of voiced speech using rigid vocal tract geometries acquired by MRI. J. Acoust. Soc. Am. 2019, 145, 2049–2061. [Google Scholar] [CrossRef] [PubMed]
- Šrámková, H.; Granqvist, S.; Herbst, C.T.; Švec, J.G. The softest sound levels of the human voice in normal subjects. J. Acoust. Soc. Am. 2015, 137, 407–418. [Google Scholar] [CrossRef] [PubMed]
- The Engineering ToolBox. Required Voice Level at Distance. 2005. Available online: https://www.engineeringtoolbox.com/voice-level-d_938.html (accessed on 3 March 2023).
- Nouraei, S.A.R.; McPartlin, D.W.; Nouraei, S.M.; Patel, A.; Ferguson, C.; Howard, D.J.; Sandhu, G.S. Objective sizing of upper airway stenosis: A quantitative endoscopic approach. Laryngoscope 2006, 116, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Khadivi, E.; Zaringhalam, M.A.; Khazaeni, K.; Bakhshaee, M. Distance between Anterior Commissure and the First Tracheal Ring: An Important New Clinical Laryngotracheal Measurement. Iran. J. Otorhinolaryngol. 2015, 27, 193–197. [Google Scholar]
- Schoder, S.; Maurerlehner, P.; Wurzinger, A.; Hauser, A.; Falk, S.; Kniesburges, S.; Döllinger, M.; Kaltenbacher, M. Aeroacoustic sound source characterization of the human voice production-perturbed convective wave equation. Appl. Sci. 2021, 11, 2614. [Google Scholar] [CrossRef]
Inner Layer | E (kPa) | E′ (kPa) | G (kPa) | μ | μ′ | VSG (kPa/mm) |
---|---|---|---|---|---|---|
Cover | 1.33 | 26.70 | 6.68 | 0.9 | 0.0 | 0.43 |
Body | 4.76 | 95.24 | 23.81 | 0.9 | 0.0 | - |
Computed Value | Typical Range [38] | |
---|---|---|
154 | 65–260 | |
1.32 | 1.1–3.4 | |
0.69 | 0.4–0.7 | |
388 | 200–580 | |
198 | 110–220 | |
481 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodaghi, D.; Xue, Q.; Thomson, S.; Zheng, X. The Effect of Subglottic Stenosis Severity on Vocal Fold Vibration and Voice Production in Realistic Laryngeal and Airway Geometries Using Fluid–Structure–Acoustics Interaction Simulation. Appl. Sci. 2025, 15, 1168. https://doi.org/10.3390/app15031168
Bodaghi D, Xue Q, Thomson S, Zheng X. The Effect of Subglottic Stenosis Severity on Vocal Fold Vibration and Voice Production in Realistic Laryngeal and Airway Geometries Using Fluid–Structure–Acoustics Interaction Simulation. Applied Sciences. 2025; 15(3):1168. https://doi.org/10.3390/app15031168
Chicago/Turabian StyleBodaghi, Dariush, Qian Xue, Scott Thomson, and Xudong Zheng. 2025. "The Effect of Subglottic Stenosis Severity on Vocal Fold Vibration and Voice Production in Realistic Laryngeal and Airway Geometries Using Fluid–Structure–Acoustics Interaction Simulation" Applied Sciences 15, no. 3: 1168. https://doi.org/10.3390/app15031168
APA StyleBodaghi, D., Xue, Q., Thomson, S., & Zheng, X. (2025). The Effect of Subglottic Stenosis Severity on Vocal Fold Vibration and Voice Production in Realistic Laryngeal and Airway Geometries Using Fluid–Structure–Acoustics Interaction Simulation. Applied Sciences, 15(3), 1168. https://doi.org/10.3390/app15031168