Noise Reduction Using Synthetic Microjet Excitation in Supersonic Rectangular Jets
Abstract
:1. Introduction
1.1. Background
1.2. Purpose
2. Methodology
2.1. Problem Statement
2.2. Computational Setup
2.3. Excitation Method
3. Results
3.1. Time-Averaged Flow
3.2. Instantaneous Flow
3.3. SPOD Modes
3.4. Far-Field Acoustics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nesbitt, E. Current engine noise and reduction technology. CEAS Aeronaut. J. 2019, 10, 93–100. [Google Scholar] [CrossRef]
- Mora, P.; Baier, F.; Kailasanath, K.; Gutmark, E.J. Acoustics from a rectangular supersonic nozzle exhausting over a flat surface. J. Acoust. Soc. Am. 2016, 140, 4130–4141. [Google Scholar] [CrossRef]
- Baier, F.; Mora, P.A.; Gutmark, E.J.; Kailasanath, K. Flow Measurements from a Supersonic Rectangular Nozzle Exhausting Over a Flat Surface. In Proceedings of the AIAA Paper 2017-0932 Presented at 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Lighthill, M.J. On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 1952, 211, 564–587. [Google Scholar] [CrossRef]
- Lighthill, M.J. On sound generated aerodynamically II. Turbulence as a source of sound. Proc. R. Soc. Lond. A 1954, 222, 1–32. [Google Scholar] [CrossRef]
- Crow, S.C.; Champagne, F.H. Orderly structure in jet turbulence. J. Fluid Mech. 1971, 48, 547–591. [Google Scholar] [CrossRef]
- Brown, G.L.; Roshko, A. On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 1974, 64, 775–816. [Google Scholar] [CrossRef]
- Harper-Bourne, M.; Fisher, M.J. The Noise from Shock Waves in Supersonic Jets. AGARD CP 1973, 131. [Google Scholar]
- Tam, C.K.W.; Tanna, H.K. Shock associated noise of supersonic jets from convergent-divergent nozzles. J. Sound Vib. 1982, 81, 337–358. [Google Scholar] [CrossRef]
- Raman, G. Advances in understanding supersonic jet screech: Review and perspective. Prog. Aerosp. Sci. 1998, 34, 45–106. [Google Scholar] [CrossRef]
- Raman, G. Supersonic Jet Screech: Half-century from Powell to the present. J. Sound Vib. 1999, 225, 543–571. [Google Scholar] [CrossRef]
- Henderson, B. Fifty Years of Fluidic Injection for Jet Noise Reduction. Int. J. Aeroacoust. 2010, 9, 91–122. [Google Scholar] [CrossRef]
- Coderoni, M.; Lyrintzis, A.S.; Blaisdell, G.A. Large-Eddy Simulations Analysis of Supersonic Heated Jets with Fluid Injection for Noise Reduction. AIAA J. 2019, 57, 3442–3455. [Google Scholar] [CrossRef]
- Samimy, M.; Kim, J.H.; Kastner, J.; Adamovich, I.; Utkin, Y. Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 2007, 578, 305–330. [Google Scholar] [CrossRef]
- Gaitonde, D.V.; Samimy, M. Coherent structures in plasma-actuator controlled supersonic jets: Axisymmetric and mixed azimuthal modes. Phys. Fluids 2011, 23, 095104. [Google Scholar] [CrossRef]
- Alvi, F.S.; Shih, C.; Elavarasan, R.; Garg, G.; Krothapall, A. Control of Supersonic Impinging Jet Flows Using Supersonic Microjets. AIAA J. 2003, 41, 1347–1355. [Google Scholar] [CrossRef]
- Ibrahim, M.K.; Kunimura, R.; Nakamura, Y. Mixing Enhancement of Compressible Jets by Using Unsteady Microjets as Actuators. J. Fluid Mech. 2002, 40, 681–688. [Google Scholar] [CrossRef]
- Mankbadi, R.; Liu, J.T.C. Sound generated aerodynamically revisited: Large-scale structures in a turbulent jet as a source of sound. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 1984, 311, 183–217. [Google Scholar] [CrossRef]
- Mankbadi, R.; Hayder, M.E.; Povinelli, L.A. The Structure of Supersonic Jet Flow and Its Radiated Sound. AIAA J. 1994, 31, 897–906. [Google Scholar] [CrossRef]
- Lyrintzis, A.S.; Coderoni, M. Overview of the Use of Large-Eddy Simulations in Jet Aeroacoustics. AIAA J. 2020, 58, 1620–1638. [Google Scholar] [CrossRef]
- Lyrintzis, A.S. Surface Integral Methods in Computational Aeroacoustics—From the (CFD) Near-Field to the (Acoustic) Far-Field. Int. J. Aeroacoust. 2003, 2, 95–128. [Google Scholar] [CrossRef]
- Lyrintzis, A.S. Review: The Use of Kirchhoff’s Method in Computational Aeroacoustics. J. Fluids Eng. 1994, 116, 665–676. [Google Scholar] [CrossRef]
- Lyrintzis, A.S.; Mankbadi, R. Prediction of the far-field jet noise using Kirchhoff’s formulation. AIAA J. 1996, 34, 413–416. [Google Scholar] [CrossRef]
- Mankbadi, R.; Shih, S.H.; Hixon, D.R.; Stuart, J.T.; Povinelli, L.A. A Surface-Integral Formulation for Jet Noise Prediction Based on the Pressure Signal Alone. J. Comput. Acoust. 1998, 6, 307–320. [Google Scholar] [CrossRef]
- Ffowcs Williams, J.E.; Hawkings, D.L. Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. London. Ser. Math. Phys. Sci. 1969, 264, 321–342. [Google Scholar] [CrossRef]
- Salehian, S.; Mankbadi, R. Jet Noise in Airframe Integration and Shielding. Appl. Sci. 2020, 10, 511. [Google Scholar] [CrossRef]
- Malczewski, B.J.; Salehian, S.; Golubev, V.V.; Mankbadi, R.R. Large-eddy simulations of noise reduction via fundamental-harmonic interactions in a supersonic rectangular jet. Int. J. Aeroacoustics 2024. [Google Scholar] [CrossRef]
- Prasad, A.L.N.; Unnikrishnan, S. Effect of plasma actuator-based control on flow-field and acoustics of supersonic rectangular jets. J. Fluid Mech. 2023, 964, A11. [Google Scholar] [CrossRef]
- Avihar, E.; Shemesh, N.; Seifert, A.; Pack, L.G. Rotation of a Rectangular Jet by Periodic Excitation. J. Aircr. 2003, 40, 217–219. [Google Scholar] [CrossRef]
- Nichols, J.; Lele, S.; Moin, P.; Ham, F.; Brès, G.; Bridges, J. Large-eddy simulation for supersonic rectangular jet noise prediction: Effects of chevrons. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO, USA, 4–6 June 2012. [Google Scholar] [CrossRef]
- Gaitonde, D.V. Simulation of Supersonic Nozzle Flows with Plasma-based Control. In Proceedings of the 39th AIAA Fluid Dynamics Conference, San Antonio, TX, USA, 22–25 June 2009. [Google Scholar] [CrossRef]
- Malczweski, B.J.; Good, P.P.; Mankbadi, R.R. 3D Nonlinear Integral Technique Based on Linearized Euler Equations for the Prediction of Supersonic Rectangular Jet Noise Sources. In Proceedings of the AIAA Paper 2023-0023 Presented at the AIAA Aviation 2023 Forum, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Marques, M.; Salehian, S.; Singh, S.; Golubev, V.V.; Lyrintzis, A.S.; Mankbadi, R.R. Comparative High-Fidelity Studies of Supersonic Rectangular and Round Jet Nozzle Flow. In Proceedings of the AIAA Paper 2023-4517 Presented at AIAA Aviation Forum 2023, San Diego, CA, USA, 12–16 June 2023. [Google Scholar] [CrossRef]
- Marques, M.; Salehian, S.; Golubev, V.V.; Mankbadi, R.R. High Fidelity Simulations of Active Control of Coherent Structures in Axisymmetric Jet. In Proceedings of the AIAA Paper 2023-0025 Presented at AIAA Scitech Forum 2023, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar]
- The OpenFOAM Foundation. OpenFOAM v9 User Guide. 2017. Available online: https://doc.cfd.direct/openfoam/user-guide-v9/contents (accessed on 21 January 2025).
- Poinsot, T.; Lele, S. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 1992, 101, 104–129. [Google Scholar] [CrossRef]
- Bredberg, J. On the Wall Boundary Condition for Turbulence Models; Internal Report 00/4; Chalmers University of Technology: Gothenburg, Sweden, 2000. [Google Scholar]
- Aikens, K.M.; Blaisdell, G.A.; Lyrintzis, A. Analysis of Converging-Diverging Beveled Nozzle Jets Using Large Eddy Simulation with a Wall Model. In Proceedings of the AIAA Paper 2015-0509, AIAA SciTech, 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar] [CrossRef]
- Bodony, D.; Lele, S. Review of the current status of jet noise predictions using large-eddy simulation. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar] [CrossRef]
- Ribeiro, A.F.; Khorrami, M.R.; Ferris, R.; König, B.; Ravetta, P.A. Lessons learned on the use of data surfaces for Ffowcs Williams-Hawkings calculations: Airframe noise applications. Aerosp. Sci. Technol. 2023, 135, 108202. [Google Scholar] [CrossRef]
- Farassat, F. Derivation of Formulations 1 and 1A of Farassat; Langley Research Center: Hampton, Virginia, 2007.
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing; Prentice-Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Marques, M. Active Control of Coherent Structures in an Axisymmetric Jet. Master’s Thesis, Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, 2021. Available online: https://commons.erau.edu/edt/601 (accessed on 21 January 2025).
- Marques, M.; Singh, S.; Salehian, S.; Golubev, V.V.; Anastasios S., L. High-Fidelity Simulations of Rectangular Jet Noise Control Using Micro-Jet Excitation. In Proceedings of the AIAA Paper 2024-2306 Presented at AIAA Scitech Forum 2024, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Viswanath, K.; Johnson, R.; Corrigan, A.; Kailasanath, K.; Mora, P.; Baier, F.; Gutmark, E. Flow Statistics and Noise of Ideally Expanded Supersonic Rectangular and Circular Jets. AIAA J. 2017, 55, 3425–3439. [Google Scholar] [CrossRef]
- Schmidt, O.T.; Towne, A.; Rigas, G.; Colonius, T.; Brès, G.A. Spectral analysis of jet turbulence. J. Fluid Mech. 2017, 855, 953–982. [Google Scholar] [CrossRef]
- Towne, A.; Schmidt, O.T.; Colonius, T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 2018, 847, 821–867. [Google Scholar] [CrossRef]
- Marques, M.; Golubev, V.V.; Lyrintzis, A.S. Acoustic Analysis of Noise Control of Rectangular Jet Using Micro-Jet Excitation. In Proceedings of the 30th AIAA/CEAS Aeroacoustics Conference, Rome, Italy, 4–7 June 2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, M.; Singh, S.; Lyrintzis, A.; Golubev, V. Noise Reduction Using Synthetic Microjet Excitation in Supersonic Rectangular Jets. Appl. Sci. 2025, 15, 1180. https://doi.org/10.3390/app15031180
Marques M, Singh S, Lyrintzis A, Golubev V. Noise Reduction Using Synthetic Microjet Excitation in Supersonic Rectangular Jets. Applied Sciences. 2025; 15(3):1180. https://doi.org/10.3390/app15031180
Chicago/Turabian StyleMarques, Michael, Surabhi Singh, Anastasios Lyrintzis, and Vladimir Golubev. 2025. "Noise Reduction Using Synthetic Microjet Excitation in Supersonic Rectangular Jets" Applied Sciences 15, no. 3: 1180. https://doi.org/10.3390/app15031180
APA StyleMarques, M., Singh, S., Lyrintzis, A., & Golubev, V. (2025). Noise Reduction Using Synthetic Microjet Excitation in Supersonic Rectangular Jets. Applied Sciences, 15(3), 1180. https://doi.org/10.3390/app15031180