Numerical Analysis of Temperature Distribution During Charging Process of Vertically Installed Hydrogen Tanks
Abstract
:1. Introduction
2. Numerical Analysis Model
2.1. Geometry of Analysis Model
2.2. Governing Equations of Analysis Model
2.3. Properties and Boundary Conditions
3. Analysis of Temperature Distribution Inside Tube Skid According to Operating and Environmental Conditions
3.1. Verification of Analysis Model
3.2. Analysis of Effect of Tube Skid Charging Time
3.3. Analysis of Effect of Inlet Temperature
3.4. Analysis of Effect of Ambient Temperature
3.5. Analysis of Effect of Initial Temperature
3.6. Analysis of Effect of Initial Pressure
4. Sensitivity Analysis for Factors and Temperature Relationship Derivation
5. Conclusions
- The inlet temperature predominantly affected the temperature at the lower section of the tank due to buoyancy, as hydrogen was introduced from the bottom. This condition increased the temperature disparity between the tank’s upper and lower sections without significantly altering the maximum temperature at the top of the tank.
- The initial pressure exhibited minimal impact on the maximum temperature, as the initial mass of hydrogen was relatively small within the examined pressure range of 5 to 20 bars.
- Sensitivity analysis through factorial design further confirmed the exclusion of inlet temperature and initial pressure as significant factors. Consequently, three out of the five analyzed factors were identified as closely associated with the tank’s maximum temperature. The initial temperature exhibited the strongest correlation, followed by charging time and ambient temperature, highlighting the importance of these three parameters in the hydrogen charging process.
- Utilizing the three identified critical factors, a regression equation for predicting the tank’s maximum temperature upon charging completion was formulated via response surface methodology. With the derived equation exhibiting an R2 value of 0.99 or higher, it facilitated highly accurate predictions of temperature across different regions of the tank using these parameters.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Cp | specific heat, J kg−1 K−1 |
Dω | cross-diffusion term, kg m−3 s−2 |
Gk | production of turbulence kinetic energy, kg m−1 s−3 |
Gω | generation of specific dissipation rate, kg m−3 s−2 |
P | pressure, Pa |
R | gas constant, J K−1 mol−1 |
T | temperature, K |
Tini | initial temperature, K |
Tamb | ambient temperature, K |
V | molar volume, m3 mol−1 |
design factor for regression equation | |
Yk | dissipation of turbulence kinetic energy, kg m−1 s−3 |
Yω | dissipation of specific dissipation rate, kg m−3 s−2 |
result of regression equation | |
constant that corrects for attractive potential of molecules | |
constant that corrects for volume of molecules | |
gravity, m s−2 | |
turbulence kinetic energy, m2 s−2 | |
thermal conductivity, W m−1 k−1 | |
time, s | |
tchr | charging time, s |
velocity, m s−1 | |
coefficient for each terms of regression equation | |
effective diffusivity for the turbulence kinetic energy, kg m−1 s−1 | |
effective diffusivity for the specific dissipation rate, kg m−1 s−1 | |
heat capacity ratio | |
viscosity, kg m−1 s−1 | |
density, kg m−3 | |
specific dissipation rate, m2 s−3 |
Abbreviations
two-dimensional | |
three-dimensional | |
carbon fiber-reinforced polymer | |
greenhouse gas | |
National Institute of Standards and Technology | |
Polyamide | |
shear stress transport |
References
- Sohag, K.; Chukavina, K.; Samargandi, N. Renewable energy and total factor productivity in OECD member countries. J. Clean. Prod. 2021, 296, 126499. [Google Scholar] [CrossRef]
- Yadav, S.; Mondal, S.S. A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology. Fuel 2022, 308, 122057. [Google Scholar] [CrossRef]
- Brauns, J.; Turek, T. Alkaline water electrolysis powered by renewable energy: A review. Processes 2020, 8, 248. [Google Scholar] [CrossRef]
- de Miguel, N.; Acosta, B.; Baraldi, D.; Melideo, R.; Cebolla, R.O.; Moretto, P. The role of initial tank temperature on refuelling of on-board hydrogen tanks. Int. J. Hydrogen Energy 2016, 41, 8606–8615. [Google Scholar] [CrossRef]
- Berghmans, J.; Vanierschot, M. Safety aspects of CNG cars. Procedia Eng. 2014, 84, 33–46. [Google Scholar] [CrossRef]
- Yang, J.C. A thermodynamic analysis of refueling of a hydrogen tank. Int. J. Hydrogen Energy 2009, 34, 6712–6721. [Google Scholar] [CrossRef]
- Kim, S.C.; Lee, S.H.; Yoon, K.B. Thermal characteristics during hydrogen fueling process of type IV cylinder. Int. J. Hydrogen Energy 2010, 35, 6830–6835. [Google Scholar] [CrossRef]
- Heitsch, M.; Baraldi, D.; Moretto, P. Numerical investigations on the fast filling of hydrogen tanks. Int. J. Hydrogen Energy 2011, 36, 2606–2612. [Google Scholar] [CrossRef]
- Galassi, M.C.; Baraldi, D.; Iborra, B.A.; Moretto, P. CFD analysis of fast filling scenarios for 70 MPa hydrogen type IV tanks. Int. J. Hydrogen Energy 2012, 37, 6886–6892. [Google Scholar] [CrossRef]
- Galassi, M.C.; Papanikolaou, E.; Heitsch, M.; Baraldi, D.; Iborra, B.A.; Moretto, P. Assessment of CFD models for hydrogen fast filling simulations. Int. J. Hydrogen Energy 2014, 39, 6252–6260. [Google Scholar] [CrossRef]
- Suryan, A.; Kim, H.D.; Setoguchi, T. Three dimensional numerical computations on the fast filling of a hydrogen tank under different conditions. Int. J. Hydrogen Energy 2012, 37, 7600–7611. [Google Scholar] [CrossRef]
- Melideo, D.; Baraldi, D.; Acosta-Iborra, B.; Cebolla, R.O.; Moretto, P. CFD simulations of filling and emptying of hydrogen tanks. Int. J. Hydrogen Energy 2017, 42, 7304–7313. [Google Scholar] [CrossRef]
- Zheng, J.; Guo, J.; Yang, J.; Zhao, Y.; Zhao, L.; Pan, X.; Ma, J.; Zhang, L. Experimental and numerical study on temperature rise within a 70 MPa type III cylinder during fast refueling. Int. J. Hydrogen Energy 2013, 38, 10956–10962. [Google Scholar] [CrossRef]
- Liszka, M.; Fridlyand, A.; Jayaraman, A.; Bonnema, M.; Sishtla, C. CFD modeling of the hydrogen fast filling process for type 3 cylinders and cylinders lined with phase change material. ASME Int. Mech. Eng. Congr. Expo. 2019, 59445, V007T08A061. [Google Scholar]
- Melideo, D.; Baraldi, D.; Galassi, M.C.; Cebolla, R.O.; Iborra, B.A.; Moretto, P. CFD model performance benchmark of fast filling simulations of hydrogen tanks with pre-cooling. Int. J. Hydrogen Energy 2014, 39, 4389–4395. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, S.; Zhang, Z.; Zheng, J.; Zhao, Y. Numerical study on the fast filling of on-bus gaseous hydrogen storage cylinder. Int. J. Hydrogen Energy 2020, 45, 9241–9251. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, J.; Xu, P.; Zhao, Y.; Li, L.; Liu, P. Numerical simulation on fast filling of hydrogen for composite storage cylinders. In Proceedings of the ASME Pressure Vessels and Piping Division Conference, Chicago, IL, USA, 27–31 July 2008. [Google Scholar]
- Dmael, E.; Weber, M.; Renault, P. Experimental and numerical evaluation of transient temperature distribution inside a cylinder during fast filling for H2 applications. In Proceedings of the Eighteenth World Hydrogen Energy Conference, Essen, Germany, 16–20 May 2010. [Google Scholar]
- Takagi, Y.; Sugie, N.; Takeda, K.; Okano, Y.; Eguchi, T.; Hirota, K. Numerical investigation of the thermal behavior in a hydrogen tank during fast filling process. In Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, HI, USA, 13–17 March 2011. [Google Scholar]
- Galassi, M.C.; Acosta-Iborra, B.; Baraldi, D.; Bonato, C.; Harskamp, F.; Frischauf, N.; Moretto, P. Onboard compressed hydrogen storage: Fast filling experiments and simulations. Energy Procedia 2012, 29, 192–200. [Google Scholar] [CrossRef]
- Berberan-Santos, M.N.; Bodunov, E.N.; Pogliani, L. The van der Waals equation: Analytical and approximate solutions. J. Math. Chem. 2008, 43, 1437–1457. [Google Scholar] [CrossRef]
- Redlich, O.; Kwong, J.N. On the thermodynamics of solutions, V. An equation of state. Fugacities of gaseous solutions. Chem. Rev. 1949, 44, 233–244. [Google Scholar] [CrossRef]
- Park, B.H. Calculation and Comparison of Thermodynamic Properties of Hydrogen Using Equations of State for Compressed Hydrogen Storage. Trans. Korean Hydrog. New Energy Soc. 2020, 31, 184–193. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Fluent User’s Guide (Release 15.0); ANSYS Inc.: Canonsburg, PA, USA, 2013; pp. 487–492. [Google Scholar]
- Joglekar, A.M.; May, A.T. Product excellence through design of experiments. Cereal Foods World 1987, 32, 857. [Google Scholar]
Properties | Al6061 | PA | CFRP |
---|---|---|---|
Density [kg/m3] | 2719 | 1100 | 1540 |
Specific Heat [J/(kg K)] | 896 | 1872 | 1040 |
Thermal Conductivity [W/(m K)] | 167 | 0.334 | 1.2 |
Case | Charging Time | Inlet Temperature (°C) | Ambient Temperature (°C) | Initial Temperature (°C) | Initial Pressure (bar) |
---|---|---|---|---|---|
Ref | 2 h (120 min) | 20 | 20 | 20 | 15 |
1 | 1 h (60 min) | 20 | 20 | 20 | 15 |
2 | 3 h (180 min) | 20 | 20 | 20 | 15 |
3 | 4 h (240 min) | 20 | 20 | 20 | 15 |
4 | 2 h (120 min) | −20 | 20 | 20 | 15 |
5 | 2 h (120 min) | 0 | 20 | 20 | 15 |
6 | 2 h (120 min) | 40 | 20 | 20 | 15 |
7 | 2 h (120 min) | 20 | −20 | 20 | 15 |
8 | 2 h (120 min) | 20 | 0 | 20 | 15 |
9 | 2 h (120 min) | 20 | 40 | 20 | 15 |
10 | 2 h (120 min) | 20 | 20 | −20 | 15 |
11 | 2 h (120 min) | 20 | 20 | 0 | 15 |
12 | 2 h (120 min) | 20 | 20 | 40 | 15 |
13 | 2 h (120 min) | 20 | 20 | 20 | 5 |
14 | 2 h (120 min) | 20 | 20 | 20 | 10 |
15 | 2 h (120 min) | 20 | 20 | 20 | 20 |
Case | Charging Time | Maximum Temperature (Hydrogen, °C) | Maximum Temperature (Tank Shell, °C) | Maximum Temperature (Outer Surface, °C) |
---|---|---|---|---|
1 | 1 h (3600 s) | 96.1 | 91.7 | 79.0 |
Ref | 2 h (7200 s) | 79.1 | 76.4 | 67.7 |
2 | 3 h (10,800 s) | 69.6 | 67.6 | 61.2 |
3 | 4 h (14,400 s) | 62.8 | 61.3 | 56.3 |
Case | Inlet Temperature | Maximum Temperature (Hydrogen, °C) | Maximum Temperature (Tank Shell, °C) | Maximum Temperature (Outer Surface, °C) |
---|---|---|---|---|
4 | −20 °C | 79.1 | 76.3 | 67.7 |
5 | 0 °C | 79.2 | 76.5 | 67.9 |
Ref | 20 °C | 79.1 | 76.4 | 67.7 |
6 | 40 °C | 79.6 | 76.8 | 68.1 |
Case | Ambient Temperature | Maximum Temperature (Hydrogen, °C) | Maximum Temperature (Tank Shell, °C) | Maximum Temperature (Outer Surface, °C) |
---|---|---|---|---|
7 | −20 °C | 62.6 | 59.8 | 50.3 |
8 | 0 °C | 70.6 | 67.8 | 58.3 |
Ref | 20 °C | 79.1 | 76.4 | 67.7 |
9 | 40 °C | 87.6 | 85.0 | 77.6 |
Case | Initial Temperature | Maximum Temperature (Hydrogen, °C) | Maximum Temperature (Tank Shell, °C) | Maximum Temperature (Outer Surface, °C) |
---|---|---|---|---|
10 | −20 °C | 55.6 | 53.4 | 47.4 |
11 | 0 °C | 66.9 | 64.4 | 57.1 |
Ref | 20 °C | 79.1 | 76.4 | 67.7 |
12 | 40 °C | 91.8 | 88.9 | 79.1 |
Case | Initial Pressure | Maximum Temperature (Hydrogen, °C) | Maximum Temperature (Tank Shell, °C) | Maximum Temperature (Outer Surface, °C) |
---|---|---|---|---|
13 | 5 bar | 81.5 | 78.6 | 69.5 |
14 | 10 bar | 80.1 | 77.2 | 68.4 |
Ref | 15 bar | 79.1 | 76.4 | 67.7 |
15 | 20 bar | 78.1 | 75.3 | 66.7 |
Parameter | Low Limit Value | Upper Limit Value |
---|---|---|
Charging Time | 60 | 240 |
Inlet Temperature | −20 | 40 |
Ambient Temperature | −20 | 40 |
Initial Temperature | −20 | 40 |
Initial Pressure | 5 | 20 |
Case | Charging Time | Inlet Temperature | Ambient Temperature | Initial Temperature | Initial Pressure |
---|---|---|---|---|---|
1 | 60 | −20 | −20 | −20 | 20 |
2 | 240 | −20 | −20 | −20 | 5 |
3 | 60 | 40 | −20 | −20 | 5 |
4 | 240 | 40 | −20 | −20 | 20 |
5 | 60 | −20 | 40 | −20 | 5 |
6 | 240 | −20 | 40 | −20 | 20 |
7 | 60 | 40 | 40 | −20 | 20 |
8 | 240 | 40 | 40 | −20 | 5 |
9 | 60 | −20 | −20 | 40 | 5 |
10 | 240 | −20 | −20 | 40 | 20 |
11 | 60 | 40 | −20 | 40 | 20 |
12 | 240 | 40 | −20 | 40 | 5 |
13 | 60 | −20 | 40 | 40 | 20 |
14 | 240 | −20 | 40 | 40 | 5 |
15 | 60 | 40 | 40 | 40 | 5 |
16 | 240 | 40 | 40 | 40 | 20 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5 | 10,368 | 2074 | 11.96 | 0.001 |
Linear | 5 | 10,368 | 2074 | 11.96 | 0.001 |
Charging Time | 1 | 3978 | 3978 | 22.94 | 0.001 |
Inlet Temperature | 1 | 113 | 113 | 0.65 | 0.438 |
Ambient Temperature | 1 | 2382 | 2382 | 13.74 | 0.004 |
Initial Temperature | 1 | 3888 | 3888 | 22.43 | 0.001 |
Initial Pressure | 1 | 7 | 7 | 0.04 | 0.846 |
Error | 10 | 1734 | 173 | ||
Total | 15 | 12,102 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5 | 10,486 | 2097 | 14.32 | 0.000 |
Linear | 5 | 10,486 | 2097 | 14.32 | 0.000 |
Charging Time | 1 | 3621 | 3621 | 24.73 | 0.001 |
Inlet Temperature | 1 | 63 | 63 | 0.43 | 0.526 |
Ambient Temperature | 1 | 2736 | 2736 | 18.68 | 0.002 |
Initial Temperature | 1 | 4042 | 4042 | 27.61 | 0.000 |
Initial Pressure | 1 | 24 | 24 | 0.16 | 0.695 |
Error | 10 | 1464 | 146 | ||
Total | 15 | 11,951 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 5 | 9222 | 1844 | 15.61 | 0.000 |
Linear | 5 | 9222 | 1844 | 15.61 | 0.000 |
Charging Time | 1 | 2077 | 2077 | 17.58 | 0.002 |
Inlet Temperature | 1 | 118 | 118 | 1.000 | 0.341 |
Ambient Temperature | 1 | 3539 | 3539 | 29.96 | 0.000 |
Initial Temperature | 1 | 3488 | 3488 | 29.52 | 0.000 |
Initial Pressure | 1 | 0 | 0 | 0.000 | 0.985 |
Error | 10 | 1181 | 118 | ||
Total | 15 | 10,403 |
Case | Charging Time (min) | Ambient Temperature (°C) | Initial Temperature (°C) |
---|---|---|---|
1 | 60 | −20 | −20 |
2 | 240 | −20 | −20 |
3 | 60 | 40 | −20 |
4 | 240 | 40 | −20 |
5 | 60 | −20 | 40 |
6 | 240 | −20 | 40 |
7 | 60 | 40 | 40 |
8 | 240 | 40 | 40 |
9 | 60 | 10 | 10 |
10 | 240 | 10 | 10 |
11 | 150 | −20 | 10 |
12 | 150 | 40 | 10 |
13 | 150 | 10 | −20 |
14 | 150 | 10 | 40 |
15 | 150 | 10 | 10 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 6 | 8205 | 1368 | 1370 | 0.000 |
Linear | 3 | 7246 | 2415 | 2421 | 0.000 |
Charging Time (tchr) | 1 | 2649 | 2649 | 2655 | 0.000 |
Ambient Temperature (Tamb) | 1 | 1808 | 1808 | 1812 | 0.000 |
Initial Temperature (Tini) | 1 | 2789 | 2789 | 2795 | 0.000 |
Square | 1 | 171 | 171 | 171 | 0.000 |
tchr × tchr | 1 | 171 | 171 | 171 | 0.000 |
Interaction | 2 | 788 | 394 | 395 | 0.000 |
tchr × Tamb | 1 | 365 | 365 | 366 | 0.000 |
tchr × Tini | 1 | 423 | 423 | 424 | 0.000 |
Error | 13 | 13 | 1 | ||
Total | 19 | 8218 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 6 | 7650 | 1275 | 1549 | 0.000 |
Linear | 3 | 6785 | 2262 | 2748 | 0.000 |
Charging Time (tchr) | 1 | 2233 | 2233 | 2713 | 0.000 |
Ambient Temperature (Tamb) | 1 | 1866 | 1866 | 2267 | 0.000 |
Initial Temperature (Tini) | 1 | 2686 | 2686 | 3263 | 0.000 |
Square | 1 | 137 | 137 | 167 | 0.000 |
tchr × tchr | 1 | 137 | 137 | 167 | 0.000 |
Interaction | 2 | 727 | 364 | 442 | 0.000 |
tchr × Tamb | 1 | 340 | 340 | 412 | 0.000 |
tchr × Tini | 1 | 388 | 388 | 471 | 0.000 |
Error | 13 | 11 | 1 | ||
Total | 19 | 7661 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Model | 7 | 6242 | 892 | 2367 | 0.000 |
Linear | 3 | 5668 | 1889 | 5016 | 0.000 |
Charging Time (tchr) | 1 | 1213 | 1213 | 3220 | 0.000 |
Ambient Temperature (Tamb) | 1 | 2244 | 2244 | 5957 | 0.000 |
Initial Temperature (Tini) | 1 | 2212 | 2212 | 5872 | 0.000 |
Square | 2 | 78 | 39 | 104 | 0.000 |
tchr × tchr | 1 | 32 | 32 | 85 | 0.000 |
Tini × Tini | 1 | 4 | 4 | 11 | 0.000 |
Interaction | 2 | 495 | 248 | 657 | 0.000 |
tchr × Tamb | 1 | 229 | 229 | 607 | 0.000 |
tchr × Tini | 1 | 167 | 267 | 708 | 0.000 |
Error | 12 | 5 | 0 | ||
Total | 19 | 6246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Hur, D.-J.; Noh, J.-H. Numerical Analysis of Temperature Distribution During Charging Process of Vertically Installed Hydrogen Tanks. Appl. Sci. 2025, 15, 1193. https://doi.org/10.3390/app15031193
Lee Y, Hur D-J, Noh J-H. Numerical Analysis of Temperature Distribution During Charging Process of Vertically Installed Hydrogen Tanks. Applied Sciences. 2025; 15(3):1193. https://doi.org/10.3390/app15031193
Chicago/Turabian StyleLee, Yeseung, Deog-Jae Hur, and Jung-Hun Noh. 2025. "Numerical Analysis of Temperature Distribution During Charging Process of Vertically Installed Hydrogen Tanks" Applied Sciences 15, no. 3: 1193. https://doi.org/10.3390/app15031193
APA StyleLee, Y., Hur, D.-J., & Noh, J.-H. (2025). Numerical Analysis of Temperature Distribution During Charging Process of Vertically Installed Hydrogen Tanks. Applied Sciences, 15(3), 1193. https://doi.org/10.3390/app15031193