Endophytes as Permanent or Temporal Inhabitants of Different Ecological Niches in Sustainable Agriculture
Abstract
:1. Introduction
2. Endophytes–Current State of the Art
2.1. The Basic Characteristic of Endophytes
2.2. Endophytes as Inhabitants of Agricultural Plants
2.2.1. Biotic and Abiotic Stresses Related to Crop Productivity
2.2.2. An Essential Nutrient Associated with Endophytes in Plants
2.2.3. Plant Phytohormones Connected with Plant Growth and Yielding
2.2.4. Endophytes as Plant Defense Against Pathogens
2.2.5. Endophytes of the Most Common Crops
2.3. Endophytes as a Feeding Niche for Animals
Persistence-Perishable of Endophytes in the Gut Microbiome of Animals
2.4. Possibilities of Using Endophytes in Agriculture-Bioproducts and Strains Used in Biofertilizers
- -
- Increased resilience of our cropping systems to water and nutrients
- -
- limitation and heat stress;
- -
- Increased resistance to the continued emergence of new pests and pathogens;
- -
- Reduced yield losses due to pathogens and pests through the management of
- -
- practices other than pesticides as the primary means of protection;
- -
- Full integration of biological substances into site-specific crop management (precision agriculture);
- -
- Effective rehabilitation of marginal, degraded and depleted land
- -
- worldwide;
- -
- Increased possibilities to identify crops suitable for biomass, including
- -
- shifting cultivation systems due to climate change and data-driven
- -
- selection of crop species for a given location;
- -
- Reduced negative impact of crop production on the environment;
- -
- Increased safety, quality and nutritional value of our food supply;
- -
- Reduced reliance on external inputs to maintain crop productivity;
- -
- Increased capacity for effective crop management to support long-term soil and ecosystem health;
- -
- Adaptive, data-driven on-farm phytobiomes management systems for optimal productivity;
- -
- Increased profitability of sustainable food, feed and fiber production to enable farmers to meet demand [177].
Regulation and Commercialization of Use of Endophyte–Plant Symbiosis
- -
- Detailed studies about the biochemical, molecular and genetic mechanisms of endophytes determining stress resistance in different crops;
- -
- Stability of strains/consortia;
- -
- To obtain diligent research on both the positive and negative effects of endophytes in order to gain a true understanding of their potential for use in field trials of at least three years;
- -
- Documented biosafety of bioproducts (especially containing live strains) in agroecosystems;
- -
- An easy way to commercially produce bioproducts.
3. Conclusions
- -
- The study of individual phytobiome components and their interactions;
- -
- The integration of knowledge, resources and tools based on phytobiomes systems,
- -
- The optimization of site-specific phytobiome-based solutions;
- -
- The application of phytobiome-based solutions in next-generation precision agriculture to sustain increased food and feed production worldwide;
- -
- The education and engagement of scientists and the public;
- -
- The use of advanced technologies to monitor the application of biological components of fertilizers and preparations in the agroecosystem.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bilański, P.; Kowalski, T. Fungal Endophytes in Fraxinus excelsior Petioles and Their in Vitro Antagonistic Potential against the Ash Dieback Pathogen Hymenoscyphus fraxineus. Microbiol. Res. 2022, 257, 126961. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Dubey, A.K. Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches. Front. Microbiol. 2018, 9, 1767. [Google Scholar] [CrossRef]
- Orozco-Mosqueda, M.d.C.; Santoyo, G. Plant-Microbial Endophytes Interactions: Scrutinizing Their Beneficial Mechanisms from Genomic Explorations. Curr. Plant Biol. 2021, 25, 100189. [Google Scholar] [CrossRef]
- Ullah, A.; Nisar, M.; Ali, H.; Hazrat, A.; Hayat, K.; Keerio, A.A.; Ihsan, M.; Laiq, M.; Ullah, S.; Fahad, S.; et al. Drought Tolerance Improvement in Plants: An Endophytic Bacterial Approach. Appl. Microbiol. Biotechnol. 2019, 103, 7385–7397. [Google Scholar] [CrossRef]
- Chaudhary, P.; Agri, U.; Chaudhary, A.; Kumar, A.; Kumar, G. Endophytes and Their Potential in Biotic Stress Management and Crop Production. Front. Microbiol. 2022, 13, 933017. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef]
- Truyens, S.; Weyens, N.; Cuypers, A.; Vangronsveld, J. Bacterial Seed Endophytes: Genera, Vertical Transmission and Interaction with Plants. Environ. Microbiol. Rep. 2015, 7, 40–50. [Google Scholar] [CrossRef]
- Sánchez-López, A.S.; Pintelon, I.; Stevens, V.; Imperato, V.; Timmermans, J.P.; González-Chávez, C.; Carrillo-González, R.; Van Hamme, J.; Vangronsveld, J.; Thijs, S. Seed Endophyte Microbiome of Crotalaria Pumila Unpeeled: Identification of Plant-Beneficial Methylobacteria. Int. J. Mol. Sci. 2018, 19, 291. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, A.S.; Thijs, S.; Beckers, B.; González-Chávez, M.C.; Weyens, N.; Carrillo-González, R.; Vangronsveld, J. Community Structure and Diversity of Endophytic Bacteria in Seeds of Three Consecutive Generations of Crotalaria Pumila Growing on Metal Mine Residues. Plant Soil 2018, 422, 51–66. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, J.P. Does Plant—Microbe Interaction Confer Stress Tolerance in Plants: A Review? Microbiol. Res. 2018, 207, 41–52. [Google Scholar] [CrossRef]
- Christian, N.; Whitaker, B.K.; Clay, K. Microbiomes: Unifying Animal and Plant Systems through the Lens of Community Ecology Theory. Front. Microbiol. 2015, 6, 869. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Carvalhais, L.C.; Crawford, M.; Singh, E.; Dennis, P.G.; Pieterse, C.M.J.; Schenk, P.M. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Front. Microbiol. 2017, 8, 2552. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.M.A.; Hassan, S.E.D.; Alsharif, S.M.; Eid, A.M.; Ewais, E.E.D.; Azab, E.; Gobouri, A.A.; Elkelish, A.; Fouda, A. Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra Pachyclada as Plant Growth-Promoting. Biomolecules 2021, 11, 140. [Google Scholar] [CrossRef]
- Aleynova, O.A.; Suprun, A.R.; Nityagovsky, N.N.; Dubrovina, A.S.; Kiselev, K.V. The Influence of the Grapevine Bacterial and Fungal Endophytes on Biomass Accumulation and Stilbene Production by the in Vitro Cultivated Cells of Vitis amurensis Rupr. Plants 2021, 10, 1276. [Google Scholar] [CrossRef]
- Pisarska, K.; Pietr, S.J. Bakterie Endofityczne—Ich Pochodzenie i Interakcje z Roślinami. Postępy Mikrobiol. 2014, 53, 141–151. [Google Scholar]
- Santos, M.S.; Orlandelli, R.C.; Polonio, J.C.; Ribeiro, M.A.d.S.; Sarragiotto, M.H.; Azevedo, J.L.; Pamphile, J.A. Endophytes Isolated from Passion Fruit Plants: Molecular Identification, Chemical Characterization and Antibacterial Activity of Secondary Metabolites. J. Appl. Pharm. Sci. 2017, 7, 038–043. [Google Scholar] [CrossRef]
- Vinodkumar, S.; Nakkeeran, S.; Renukadevi, P.; Mohankumar, S. Diversity and Antiviral Potential of Rhizospheric and Endophytic Bacillus Species and Phyto-Antiviral Principles against Tobacco Streak Virus in Cotton. Agric. Ecosyst. Environ. 2018, 267, 42–51. [Google Scholar] [CrossRef]
- Nigris, S.; Baldan, E.; Tondello, A.; Zanella, F.; Vitulo, N.; Favaro, G.; Guidolin, V.; Bordin, N.; Telatin, A.; Barizza, E.; et al. Biocontrol Traits of Bacillus licheniformis GL174, a Culturable Endophyte of Vitis vinifera Cv. Glera 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0607 Plant Biology 06 Biological Sciences 0605 Microbiology. BMC Microbiol 2018, 18, 133. [Google Scholar] [CrossRef]
- Pašakinskienė, I.; Stakelienė, V.; Matijošiūtė, S.; Martūnas, J. Diversity of Endophytic Fungi and Bacteria Inhabiting the Roots of the Woodland Grass, Festuca gigantea (Poaceae). Diversity 2024, 16, 453. [Google Scholar] [CrossRef]
- Kuźniar, A.; Włodarczyk, K.; Grządziel, J.; Woźniak, M.; Furtak, K.; Gałązka, A.; Dziadczyk, E.; Skórzyńska-Polit, E.; Wolińska, A. New Insight into the Composition of Wheat Seed Microbiota. Int. J. Mol. Sci. 2020, 21, 4634. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, R.; Khan, A.L.; Bilal, S.; Asaf, S.; Lee, I.J. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth. Front. Plant Sci. 2018, 9, 24. [Google Scholar] [CrossRef]
- Rahman, M.M.; Flory, E.; Koyro, H.W.; Abideen, Z.; Schikora, A.; Suarez, C.; Schnell, S.; Cardinale, M. Consistent Associations with Beneficial Bacteria in the Seed Endosphere of Barley (Hordeum vulgare L.). Syst. Appl. Microbiol. 2018, 41, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Zotchev, S.B. Unlocking the potential of bacterial endophytes from medicinal plants for drug discovery. Microb. Biotechnol. 2024, 17, e14382. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, G.; Moreno-Hagelsieb, G.; del Carmen Orozco-Mosqueda, M.; Glick, B.R. Plant Growth-Promoting Bacterial Endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Lalhmangaihmawia, H.; Vanlallawmzuali, A.K.; Mukesh, K.Y.; Zothanpuia, P.K.S. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. Curr. Res. Microbiol. Sci. 2024, 7, 100241. [Google Scholar]
- Anand, U.; Pal, T.; Yadav, N.; Singh, V.K.; Tripathi, V.; Choudhary, K.K.; Shukla, A.K.; Sunita, K.; Kumar, A.; Bontempi, E.; et al. Current Scenario and Future Prospects of Endophytic Microbes: Promising Candidates for Abiotic and Biotic Stress Management for Agricultural and Environmental Sustainability. Microb. Ecol. 2023, 86, 1455–1486. [Google Scholar] [CrossRef] [PubMed]
- Rana, K.L.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.N.; Yadav, N.; Dhaliwal, H.S.; Saxena, A.K. Endophytic Microbes: Biodiversity, Plant Growth-Promoting Mechanisms and Potential Applications for Agricultural Sustainability. Antonie Van Leeuwenhoek 2020, 113, 1075–1107. [Google Scholar] [CrossRef] [PubMed]
- Afzal, I.; Shinwari, Z.K.; Sikandar, S.; Shahzad, S. Plant Beneficial Endophytic Bacteria: Mechanisms, Diversity, Host Range and Genetic Determinants. Microbiol. Res. 2019, 221, 36–49. [Google Scholar] [CrossRef]
- Barraza, A.; Caamal-Chan, M.G.; Castellanos, T.; Loera-Muro, A. Bacterial Community Characterization of the Rhizobiome of Plants Belonging to Solanaceae Family Cultivated in Desert Soils. Ann. Microbiol. 2020, 70, 34. [Google Scholar] [CrossRef]
- Taneja, T.; Garg, H.; Sharma, I.; Singh, R. Isolation and Identification of Endophytic Fungi and Evaluation of Their Interactions with Plants from Syzygium cumini (Jamun) and Ocimum tenuiflorum (Tulsi). J. Indian Bot. Soc. 2023, 103, 281–285. [Google Scholar]
- Thapa, M.; Parkash, V.; Pandey, A.; Kaundal, R.; Paul, S. Bambusicolous Endophytic Fungi: A Systematic Review with an Emphasis Related on India. Adv. Bamboo Sci. 2024, 7, 100065. [Google Scholar] [CrossRef]
- Terhonen, E.; Blumenstein, K.; Kovalchuk, A.; Asiegbu, F.O. Forest Tree Microbiomes and Associated Fungal Endophytes: Functional Roles and Impact on Forest Health. Forests 2019, 10, 42. [Google Scholar] [CrossRef]
- Gaber, D.A.; Berthelot, C.; Blaudez, D.; Kovács, G.M.; Franken, P. Impact of Dark Septate Endophytes on Salt Stress Alleviation of Tomato Plants. Front. Microbiol. 2023, 14, 1124879. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.L.; Sun, P.; Wang, X.M.; Lv, F.Y.; Mao, X.J.; Sun, J.G. Rhizobium wenxiniae sp. nov., an Endophytic Bacterium Isolated from Maize Root. Int. J. Syst. Evol. Microbiol. 2017, 67, 2798–2803. [Google Scholar] [CrossRef]
- Brígido, C.; Singh, S.; Menéndez, E.; Tavares, M.J.; Glick, B.R.; Do Rosário Félix, M.; Oliveira, S.; Carvalho, M. Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants. Plants 2019, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Suman, A.; Nath Yadav, A.; Verma, P. Endophytic Microbes in Crops: Diversity and Beneficial Impact for Sustainable Agriculture. In Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 1: Research Perspectives; Springer: New Delhi, India, 2016; pp. 117–143. [Google Scholar] [CrossRef]
- Fu, Y.; Yin, Z.H.; Yin, C.Y. Biotransformation of Ginsenoside Rb1 to Ginsenoside Rg3 by Endophytic Bacterium Burkholderia Sp. GE 17-7 Isolated from Panax Ginseng. J. Appl. Microbiol. 2017, 122, 1579–1585. [Google Scholar] [CrossRef]
- Silveira, A.P.D.d.; Sala, V.M.R.; Cardoso, E.J.B.N.; Labanca, E.G.; Cipriano, M.A.P. Nitrogen Metabolism and Growth of Wheat Plant under Diazotrophic Endophytic Bacteria Inoculation. Appl. Soil. Ecol. 2016, 107, 313–319. [Google Scholar] [CrossRef]
- Brusamarello-Santos, L.C.C.; Alberton, D.; Valdameri, G.; Camilios-Neto, D.; Covre, R.; Lopes, K.d.P.; Zibetti Tadra-Sfeir, M.; Faoro, H.; Adele Monteiro, R.; Barbosa-Silva, A.; et al. Modulation of Defence and Iron Homeostasis Genes in Rice Roots by the Diazotrophic Endophyte Herbaspirillum seropedicae. Sci. Rep. 2019, 9, 10573. [Google Scholar] [CrossRef]
- Shalini, D.; Benson, A.; Gomathi, R.; John Henry, A.; Jerritta, S.; Melvin Joe, M. Isolation, Characterization of Glycolipid Type Biosurfactant from Endophytic Acinetobacter Sp. ACMS25 and Evaluation of Its Biocontrol Efficiency against Xanthomonas oryzae. Biocatal. Agric. Biotechnol. 2017, 11, 252–258. [Google Scholar] [CrossRef]
- Selvankumar, T.; Radhika, R.; Mythili, R.; Arunprakash, S.; Srinivasan, P.; Govarthanan, M.; Kim, H. Isolation, Identification and Characterization of Arsenic Transforming Exogenous Endophytic Citrobacter sp. RPT from Roots of Pteris vittata. 3 Biotech 2017, 7, 264. [Google Scholar] [CrossRef]
- Tian, B.; Zhang, C.; Ye, Y.; Wen, J.; Wu, Y.; Wang, H.; Li, H.; Cai, S.; Cai, W.; Cheng, Z.; et al. Beneficial Traits of Bacterial Endophytes Belonging to the Core Communities of the Tomato Root Microbiome. Agric. Ecosyst. Environ. 2017, 247, 149–156. [Google Scholar] [CrossRef]
- Bodhankar, S.; Grover, M.; Hemanth, S.; Reddy, G.; Rasul, S.; Yadav, S.K.; Desai, S.; Mallappa, M.; Mandapaka, M.; Srinivasarao, C. Maize Seed Endophytic Bacteria: Dominance of Antagonistic, Lytic Enzyme-Producing Bacillus spp. 3 Biotech 2017, 7, 232. [Google Scholar] [CrossRef]
- Sahib, M.R.; Yang, P.; Bokros, N.; Shapiro, N.; Woyke, T.; Kyrpides, N.C.; Xia, Y.; DeBolt, S. Improved Draft Genome Sequence of Microbacterium sp. Strain LKL04, a Bacterial Endophyte Associated with Switchgrass Plants. Microbiol. Resour. Announc. 2019, 8, e00927-19. [Google Scholar] [CrossRef]
- López, S.M.Y.; Pastorino, G.N.; Franco, M.E.E.; Medina, R.; Lucentini, C.G.; Saparrat, M.C.N.; Balatti, P.A. Microbial Endophytes That Live within the Seeds of Two Tomato Hybrids Cultivated in Argentina. Agronomy 2018, 8, 136. [Google Scholar] [CrossRef]
- Larran, S.; Simón, M.R.; Moreno, M.V.; Siurana, M.P.S.; Perelló, A. Endophytes from Wheat as Biocontrol Agents against Tan Spot Disease. Biol. Control 2016, 92, 17–23. [Google Scholar] [CrossRef]
- Nissinen, R.; Helander, M.; Kumar, M.; Saikkonen, K. Heritable Epichloë Symbiosis Shapes Fungal but Not Bacterial Communities of Plant Leaves. Sci. Rep. 2019, 9, 5253. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, J.P.; Carter, M.E.; Spraker, J.E.; Clark, M.; Smith, B.A.; Hockett, K.L.; Baltrus, D.A.; Arnold, A.E. Transcriptional Profiles of a Foliar Fungal Endophyte (Pestalotiopsis, Ascomycota) and Its Bacterial Symbiont (Luteibacter, Gammaproteobacteria) Reveal Sulfur Exchange and Growth Regulation during Early Phases of Symbiotic Interaction. mSystems 2022, 7, e0009122. [Google Scholar] [CrossRef] [PubMed]
- Mahish, P.K.; Singh, S.; Chauhan, R. Bioactive Secondary Metabolites from Endophytic Phoma spp. In Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology; Springer: Cham, Switzerland, 2022; pp. 205–219. [Google Scholar] [CrossRef]
- Gavrilova, O.P.; Gagkaeva, T.Y.; Orina, A.S.; Gogina, N.N. Diversity of Fusarium Species and Their Mycotoxins in Cereal Crops from the Asian Territory of Russia. Dokl. Biol. Sci. 2023, 508, 9–19. [Google Scholar] [CrossRef] [PubMed]
- De Francesco, M.A. Drug-Resistant Aspergillus Spp.: A Literature Review of Its Resistance Mechanisms and Its Prevalence in Europe. Pathogens 2023, 12, 1305. [Google Scholar] [CrossRef] [PubMed]
- Mote, R.S.; Filipov, N.M. Use of Integrative Interactomics for Improvement of Farm Animal Health and Welfare: An Example with Fescue Toxicosis. Toxins 2020, 12, 633. [Google Scholar] [CrossRef]
- Luangharn, T.; Karunarathna, S.C.; Dutta, A.K.; Paloi, S.; Promputtha, I.; Hyde, K.D.; Xu, J.; Mortimer, P.E. Ganoderma (Ganodermataceae, Basidiomycota) Species from the Greater Mekong Subregion. J. Fungi 2021, 7, 819. [Google Scholar] [CrossRef]
- Izhar, A.; Saman, M.; Asif, M.; Niazi, A.R.; Khalid, A.N. Two New Records of Tricholoma Species from Pakistan Based on Morphological Features and Phylogenetic Analysis. Plant Fungal Syst. 2022, 67, 25–33. [Google Scholar] [CrossRef]
- Caruso, D.J.; Palombo, E.A.; Moulton, S.E.; Zaferanloo, B. Exploring the Promise of Endophytic Fungi: A Review of Novel Antimicrobial Compounds. Microorganisms 2022, 10, 1990. [Google Scholar] [CrossRef]
- Jha, P.; Panwar, J.; Jha, P.N. Mechanistic Insights on Plant Root Colonization by Bacterial Endophytes: A Symbiotic Relationship for Sustainable Agriculture. Environ. Sustain. 2018, 1, 25–38. [Google Scholar] [CrossRef]
- Pawlik, M.; Plociniczak, T.; Piotrowska-Szeget, Z. Bakterie Endofityczne i Ich Znaczenie w Mikrobiologii Środowiskowej, Medycynie i Przemyśle. Postępy Mikrobiol. 2015, 54, 115–122. [Google Scholar]
- Sharma, M.; Kansal, R.; Singh, D. Endophytic Microorganisms: Their Role in Plant Growth and Crop Improvement. New Future Dev. Microb. Biotechnol. Bioeng. Crop Improv. Through Microb. Biotechnol. 2018, 391–413. [Google Scholar] [CrossRef]
- Tripathi, A.; Awasthi, A.; Singh, S.; Sah, K.; Maji, D.; Patel, V.K.; Verma, R.K.; Kalra, A. Enhancing Artemisinin Yields through an Ecologically Functional Community of Endophytes in Artemisia annua. Ind. Crops Prod. 2020, 150, 112375. [Google Scholar] [CrossRef]
- Rho, H.; Hsieh, M.; Kandel, S.L.; Cantillo, J.; Doty, S.L.; Kim, S.H. Do Endophytes Promote Growth of Host Plants Under Stress? A Meta-Analysis on Plant Stress Mitigation by Endophytes. Microb. Ecol. 2018, 75, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Hussain, M.B.; Zahir, Z.A.; Mitter, B.; Sessitsch, A. Drought Stress Amelioration in Wheat through Inoculation with Burkholderia phytofirmans Strain PsJN. Plant Growth Regul. 2014, 73, 121–131. [Google Scholar] [CrossRef]
- González-Teuber, M.; Urzúa, A.; Plaza, P.; Bascuñán-Godoy, L.; González-Teuber, M.; Urzúa, A.; Plaza, P.; Bascuñán-Godoy, L. Effects of Root Endophytic Fungi on Response of Chenopodium quinoa to Drought Stress. Plant Ecol. 2018, 219, 231–240. [Google Scholar] [CrossRef]
- Su, F.; Jacquard, C.; Villaume, S.; Michel, J.; Rabenoelina, F.; Clément, C.; Barka, E.A.; Dhondt-Cordelier, S.; Vaillant-Gaveau, N. Burkholderia phytofirmans PsJN Reduces Impact of Freezing Temperatures on Photosynthesis in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 810. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Shankar, A.; Chandran, A.K.N.; Sharma, M.; Jung, K.H.; Suprasanna, P.; Pandey, G.K. Emerging Concepts of Potassium Homeostasis in Plants. J. Exp. Bot. 2020, 71, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Charles, T.C.; Glick, B.R. Amelioration of High Salinity Stress Damage by Plant Growth-Promoting Bacterial Endophytes That Contain ACC Deaminase. Plant Physiol. Biochem. 2014, 80, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Tsai, C.F.; Hameed, A.; Chang, Y.J.; Young, C.C. Agricultural Management and Cultivation Period Alter Soil Enzymatic Activity and Bacterial Diversity in Litchi (Litchi chinensis Sonn.) Orchards. Bot. Stud. 2021, 62, 13. [Google Scholar] [CrossRef] [PubMed]
- Riskuwa-Shehu, M.L.; Ismail, H.Y.; Ijah, U.J.J. Heavy Metal Resistance by Endophytic Bacteria Isolated from Guava (Psidium guajava) and Mango (Mangifera indica) Leaves. Int. Ann. Sci. 2019, 9, 16–23. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Zhang, C.; Freitas, H. Beneficial Role of Bacterial Endophytes in Heavy Metal Phytoremediation. J. Environ. Manag. 2016, 174, 14–25. [Google Scholar] [CrossRef]
- Chirakkara, R.A.; Cameselle, C.; Reddy, K.R. Assessing the Applicability of Phytoremediation of Soils with Mixed Organic and Heavy Metal Contaminants. Rev. Environ. Sci. Bio/Technol. 2016, 15, 299–326. [Google Scholar] [CrossRef]
- Armendariz, A.L.; Talano, M.A.; Wevar Oller, A.L.; Medina, M.I.; Agostini, E. Effect of Arsenic on Tolerance Mechanisms of Two Plant Growth-Promoting Bacteria Used as Biological Inoculants. J. Environ. Sci. 2015, 33, 203–210. [Google Scholar] [CrossRef]
- Nag, P.; Shriti, S.; Das, S. Microbiological Strategies for Enhancing Biological Nitrogen Fixation in Nonlegumes. J. Appl. Microbiol. 2020, 129, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lin, Y.; Qin, Y.; Han, G.; Wang, H.; Yan, Z. Beneficial Endophytic Fungi Improve the Yield and Quality of Salvia miltiorrhiza by Performing Different Ecological Functions. PeerJ 2024, 12, e16959. [Google Scholar] [CrossRef]
- Pandey, P.K.; Singh, M.C.; Singh, S.; Singh, A.K.; Kumar, M.; Pathak, M.; Shakywar, R.C.; Pandey, A.K. Inside the Plants: Endophytic Bacteria and Their Functional Attributes for Plant Growth Promotion. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 11–21. [Google Scholar] [CrossRef]
- Matos, A.D.M.; Gomes, I.C.P.; Nietsche, S.; Xavier, A.A.; Gomes, W.S.; dos Santos Neto, J.A.; Pereira, M.C.T. Phosphate Solubilization by Endophytic Bacteria Isolated from Banana Trees. An. Acad. Bras. Cienc. 2017, 89, 2945–2954. [Google Scholar] [CrossRef]
- Muthuraja, R.; Muthukumar, T. Isolation and Characterization of Potassium Solubilizing Aspergillus Species Isolated from Saxum Habitats and Their Effect on Maize Growth in Different Soil Types. Geomicrobiol. J. 2021, 38, 672–685. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, A.; Singh, R.; Pandey, K.D. Endophytic Bacteria: A New Source of Bioactive Compounds. 3 Biotech 2017, 7, 315. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Charles, T.C.; Glick, B.R. Endophytic Phytohormones and Their Role in Plant Growth Promotion. In Functional Importance of the Plant Microbiome: Implications for Agriculture, Forestry and Bioenergy; Springer: Cham, Switzerland, 2017; pp. 89–105. [Google Scholar] [CrossRef]
- Ghiasian, M. Endophytic Microbiomes: Biodiversity, Current Status, and Potential Agricultural Applications. Microorg. Sustain. 2020, 19, 61–82. [Google Scholar] [CrossRef]
- Qiang, X.; Ding, J.; Lin, W.; Li, Q.; Xu, C.; Zheng, Q.; Li, Y. Alleviation of the Detrimental Effect of Water Deficit on Wheat (Triticum aestivum L.) Growth by an Indole Acetic Acid-Producing Endophytic Fungus. Plant Soil. 2019, 439, 373–391. [Google Scholar] [CrossRef]
- Mehmood, A.; Hussain, A.; Irshad, M.; Hamayun, M.; Iqbal, A.; Khan, N. In Vitro Production of IAA by Endophytic Fungus Aspergillus awamori and Its Growth Promoting Activities in Zea Mays. Symbiosis 2019, 77, 225–235. [Google Scholar] [CrossRef]
- Bean, K.M.; Kisiala, A.B.; Morrison, E.N.; Emery, R.J.N. Trichoderma Synthesizes Cytokinins and Alters Cytokinin Dynamics of Inoculated Arabidopsis Seedlings. J. Plant Growth Regul. 2022, 41, 2678–2694. [Google Scholar] [CrossRef]
- Etminani, F.; Harighi, B. Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees. Plant Pathol. J. 2018, 34, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Fadiji, A.E.; Babalola, O.O. Exploring the Potentialities of Beneficial Endophytes for Improved Plant Growth. Saudi J. Biol. Sci. 2020, 27, 3622–3633. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A. Are Dark Septate Endophytes Bioindicators of Climate in Mountain Ecosystems? Rhizosphere 2019, 9, 110–111. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Sheikh, I.; Kumar, V.; Yadav, A.N.; Dhaliwal, H.S.; Saxena, A.K. Alleviation of Drought Stress and Plant Growth Promotion by Pseudomonas libanensis EU-LWNA-33, a Drought-Adaptive Phosphorus-Solubilizing Bacterium. Proc. Natl. Acad. Sci. India Sect. B—Biol. Sci. 2020, 90, 785–795. [Google Scholar] [CrossRef]
- Constantin, M.E.; de Lamo, F.J.; Vlieger, B.V.; Rep, M.; Takken, F.L.W. Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. Front. Plant Sci. 2019, 10, 979. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, F.; Zhang, M.; Ou, T.; Wang, R.; Strobel, G.; Xiang, Z.; Zhou, Z.; Xie, J. Diversity of Cultivable Endophytic Bacteria in Mulberry and Their Potential for Antimicrobial and Plant Growth-Promoting Activities. Microbiol. Res. 2019, 229, 126328. [Google Scholar] [CrossRef]
- Islam, M.N.; Ali, M.S.; Choi, S.J.; Park, Y.-I.; Baek, K.H. Salicylic Acid-Producing Endophytic Bacteria Increase Nicotine Accumulation and Resistance against Wildfire Disease in Tobacco Plants. Microorganisms 2019, 8, 31. [Google Scholar] [CrossRef]
- Macías-Rodríguez, L.; Contreras-Cornejo, H.A.; Adame-Garnica, S.G.; del-Val, E.; Larsen, J. The Interactions of Trichoderma at Multiple Trophic Levels: Inter-Kingdom Communication. Microbiol. Res. 2020, 240, 126552. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ölmez, F.; Tatar, M.; Tabbasum, I.; Azeem, H.; Sarwar, R.; Ali, F. Mycotoxin Production by Fusarium Species and a Recent Deep Insight into Management through Biocontrol Approaches. J. Glob. Innov. Agric. Sci. 2023, 11, 455–480. [Google Scholar] [CrossRef]
- Lata, R.; Chowdhury, S.; Gond, S.K.; White, J.F. Induction of Abiotic Stress Tolerance in Plants by Endophytic Microbes. Lett. Appl. Microbiol. 2018, 66, 268–276. [Google Scholar] [CrossRef]
- Podolska, G.; Aleksandrowicz, E.; Szafrańska, A. Bread Making Potential of Triticum aestivum and Triticum spelta Species. Open Life Sci. 2020, 15, 30–40. [Google Scholar] [CrossRef]
- Ofek-Lalzar, M.; Gur, Y.; Ben-Moshe, S.; Sharon, O.; Kosman, E.; Mochli, E.; Sharon, A. Diversity of Fungal Endophytes in Recent and Ancient Wheat Ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol. Ecol. 2016, 92, fiw152. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X. Research on Corn Production Efficiency and Influencing Factors of Typical Farms: Based on Data from 12 Corn-Producing Countries from 2012 to 2019. PLoS ONE 2021, 16, e0254423. [Google Scholar] [CrossRef]
- Wallace, J.G. Maize Seed Endophytes. Mol. Plant Pathol. 2023, 24, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.; Palombo, E.A.; Jaimes Castillo, A.; Zaferanloo, B. Endophytes in Agriculture: Potential to Improve Yields and Tolerances of Agricultural Crops. Microorganisms 2023, 11, 1276. [Google Scholar] [CrossRef]
- Pal, G.; Kumar, K.; Verma, A.; Verma, S.K. Seed Inhabiting Bacterial Endophytes of Maize Promote Seedling Establishment and Provide Protection against Fungal Disease. Microbiol. Res. 2022, 255, 126926. [Google Scholar] [CrossRef]
- Degani, O.; Regev, D.; Dor, S. The Microflora of Maize Grains as a Biological Barrier against the Late Wilt Causal Agent, Magnaporthiopsis maydis. Agronomy 2021, 11, 965. [Google Scholar] [CrossRef]
- Siddique, S.; Naveed, M.; Yaseen, M.; Shahbaz, M. Exploring Potential of Seed Endophytic Bacteria for Enhancing Drought Stress Resilience in Maize (Zea mays L.). Sustainability 2022, 14, 673. [Google Scholar] [CrossRef]
- Bomfim, C.S.G.; da Silva, V.B.; Cursino, L.H.S.; Mattos, W.d.S.; Santos, J.C.S.; de Souza, L.S.B.; Dantas, B.F.; de Freitas, A.D.S.; Fernandes-Júnior, P.I. Endophytic Bacteria Naturally Inhabiting Commercial Maize Seeds Occupy Different Niches and Are Efficient Plant Growth-Promoting Agents. Symbiosis 2020, 81, 255–269. [Google Scholar] [CrossRef]
- Chandra, T.; Sahu, J.; Jaiswal, S.; Iquebal, M.A.; Kumar, D. Current Research Status and Emerging Trends in Wheat: An Integrated Scientometric Analysis Based on Ploidy Uncovers Hidden Footprints in the Scientific Landscape. Heliyon 2024, 10, e36375. [Google Scholar] [CrossRef]
- Makar, O.; Kuźniar, A.; Patsula, O.; Kavulych, Y.; Kozlovskyy, V.; Wolińska, A.; Skórzyńska-Polit, E.; Vatamaniuk, O.; Terek, O.; Romanyuk, N. Bacterial Endophytes of Spring Wheat Grains and the Potential to Acquire Fe, Cu, and Zn under Their Low Soil Bioavailability. Biology 2021, 10, 409. [Google Scholar] [CrossRef] [PubMed]
- Kuźniar, A.; Włodarczyk, K.; Grządziel, J.; Goraj, W.; Gałązka, A.; Wolińska, A. Culture-Independent Analysis of an Endophytic Core Microbiome in Two Species of Wheat: Triticum aestivum L. (Cv. ‘Hondia’) and the First Report of Microbiota in Triticum spelta L. (Cv. ‘Rokosz’). Syst. Appl. Microbiol. 2020, 43, 126025. [Google Scholar] [CrossRef] [PubMed]
- Lidia, B.; Sylwia, S.; Katarzyna, M. Fungi Inhabiting the Wheat Endosphere. Pathogens 2021, 10, 1288. [Google Scholar] [CrossRef] [PubMed]
- Card, S.D.; Faville, M.J.; Simpson, W.R.; Johnson, R.D.; Voisey, C.R.; de Bonth, A.C.M.; Hume, D.E. Mutualistic Fungal Endophytes in the Triticeae—Survey and Description. FEMS Microbiol. Ecol. 2014, 88, 94–106. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, R.H.; Hyde, K.D.; Pawłowska, J.; Ryberg, M.; Tedersoo, L.; Aas, A.B.; Alias, S.A.; Alves, A.; Anderson, C.L.; Antonelli, A.; et al. Improving ITS Sequence Data for Identification of Plant Pathogenic Fungi. Fungal Divers. 2014, 67, 11–19. [Google Scholar] [CrossRef]
- Ganie, S.A.; Bhat, J.A.; Devoto, A. The Influence of Endophytes on Rice Fitness under Environmental Stresses. Plant Mol. Biol. 2022, 109, 447–467. [Google Scholar] [CrossRef]
- Ali, M.; Ali, Q.; Sohail, M.A.; Ashraf, M.F.; Saleem, M.H.; Hussain, S.; Zhou, L. Diversity and Taxonomic Distribution of Endophytic Bacterial Community in the Rice Plant and Its Prospective. Int. J. Mol. Sci. 2021, 22, 10165. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, L.; Jain, S.K.; Chaturvedi, S.; Kaushal, P. Bacterial Endophytes of Rice (Oryza sativa L.) and Their Potential for Plant Growth Promotion and Antagonistic Activities. S. Afr. J. Bot. 2020, 134, 50–63. [Google Scholar] [CrossRef]
- Shahzad, R.; Waqas, M.; Khan, A.L.; Al-Hosni, K.; Kang, S.M.; Seo, C.W.; Lee, I.J. Indoleacetic Acid Production and Plant Growth Promoting Potential of Bacterial Endophytes Isolated from Rice (Oryza sativa L.) Seeds. Acta Biol. Hung. 2017, 68, 175–186. [Google Scholar] [CrossRef]
- Gusain, Y.S.; Kamal, R.; Mehta, C.M.; Singh, U.S.; Sharma, A.K. Phosphate Solubilizing and Indole-3-Acetic Acid Producing Bacteria from the Soil of Garhwal Himalaya Aimed to Improve the Growth of Rice. J. Environ. Biol. 2015, 36, 301–307. [Google Scholar]
- Walitang, D.I.; Kim, K.; Madhaiyan, M.; Kim, Y.K.; Kang, Y.; Sa, T. Characterizing Endophytic Competence and Plant Growth Promotion of Bacterial Endophytes Inhabiting the Seed Endosphere of Rice. BMC Microbiol. 2017, 17, 209. [Google Scholar] [CrossRef]
- Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host Genetics Influence the Rumen Microbiota and Heritable Rumen Microbial Features Associate with Feed Efficiency in Cattle. Microbiome 2019, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Myer, P.R. Bovine Genome-Microbiome Interactions: Metagenomic Frontier for the Selection of Efficient Productivity in Cattle Systems. mSystems 2019, 4, e00103-19. [Google Scholar] [CrossRef] [PubMed]
- Khafipour, E.; Li, S.; Tun, H.M.; Derakhshani, H.; Moossavi, S.; Plaizier, K.J.C. Effects of Grain Feeding on Microbiota in the Digestive Tract of Cattle. Anim. Front. 2016, 6, 13–19. [Google Scholar] [CrossRef]
- Belanche, A.; Kingston-Smith, A.H.; Griffith, G.W.; Newbold, C.J. A Multi-Kingdom Study Reveals the Plasticity of the Rumen Microbiota in Response to a Shift From Non-Grazing to Grazing Diets in Sheep. Front. Microbiol. 2019, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.Z.; Chen, G.; Hong, Q.; Huang, S.; Smith, H.M.; Shah, R.D.; Scholz, M.; Ferguson, J.F. Multi-Omic Analysis of the Microbiome and Metabolome in Healthy Subjects Reveals Microbiome-Dependent Relationships Between Diet and Metabolites. Front. Genet. 2019, 10, 454. [Google Scholar] [CrossRef]
- Morales-Vargas, A.T.; López-Ramírez, V.; Álvarez-Mejía, C.; Vázquez-Martínez, J. Endophytic Fungi for Crops Adaptation to Abiotic Stresses. Microorganisms 2024, 12, 1357. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, J.; Zhao, X.; Shi, J.; Jiang, C.; Shao, D. Beneficial Effects of Endophytic Fungi Colonization on Plants. Appl. Microbiol. Biotechnol. 2019, 103, 3327–3340. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wu, J.; Wei, J.; Yimiti, D.; Mi, X. Metabolic composition of endophytes contributed to the effect of Brassica rapa L. in improving immunity. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Koehler, H.; Puchalski, K.; Ruiz, G.; Jacobs, B.; Langland, J. The Role of Endophytic/Epiphytic Bacterial Constituents in the Immunostimulatory Activity of the Botanical, Astragalus membranaceus. Yale J. Biol. Med. 2020, 93, 239–250. [Google Scholar]
- Postler, T.S.; Ghosh, S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab. 2017, 26, 110–130. [Google Scholar] [CrossRef]
- Altman, A.W.; Adams, A.A.; McLeod, K.; Vanzant, E.S. Interactions between animal temperament and exposure to endophytic tall fescue: Effects on cell-mediated and humoral immunity in beef heifers. Front. Anim. Sci. 2023, 4, 1086755. [Google Scholar] [CrossRef]
- Klotz, J.L.; Nicol, A.M. Ergovaline, an endophytic alkaloid. 1. Animal physiology and metabolism. Anim. Prod. Sci. 2016, 56, 1761–1774. [Google Scholar] [CrossRef]
- Muñoz-Cazalla, A.; de Quinto, I.; Álvaro-Llorente, L.; Rodríguez-Beltrán, J.; Herencias, C. The Role of Bacterial Metabolism in Human Gut Colonization. Int. Microbiol. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a Bacterial World, a New Imperative for the Life Sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef]
- Martínez-Romero, E.; Aguirre-Noyola, J.L.; Bustamante-Brito, R.; González-Román, P.; Hernández-Oaxaca, D.; Higareda-Alvear, V.; Montes-Carreto, L.M.; Martínez-Romero, J.C.; Rosenblueth, M.; Servín-Garcidueñas, L.E. We and Herbivores Eat Endophytes. Microb. Biotechnol. 2021, 14, 1282–1299. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.S.; Jain, R.; Bhardwaj, P.; Thakur, A.; Kumari, M.; Bhushan, S.; Kumar, S. Plant Probiotics—Endophytes Pivotal to Plant Health. Microbiol. Res. 2022, 263, 127148. [Google Scholar] [CrossRef] [PubMed]
- Hacquard, S.; Garrido-Oter, R.; González, A.; Spaepen, S.; Ackermann, G.; Lebeis, S.; McHardy, A.C.; Dangl, J.L.; Knight, R.; Ley, R.; et al. Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host Microbe 2015, 17, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.Y.; Wheeler, E.; Cann, I.K.O.; Mackie, R.I. Phylogenetic Analysis of the Fecal Microbial Community in Herbivorous Land and Marine Iguanas of the Galápagos Islands Using 16S RRNA-Based Pyrosequencing. ISME J. 2011, 5, 1461–1470. [Google Scholar] [CrossRef]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of Mammals and Their Gut Microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-puebla, S.T.; Servín-Garcidueñas, L.E.; Jiménez-marín, B.; Bolaños, L.M.; Rosenblueth, M.; Martínez, J.; Rogel, M.A.; Ormeño-orrillo, E.; Martínez-romero, E. Gut and Root Microbiota Commonalities. Appl. Environ. Microbiol. 2013, 79, 2–9. [Google Scholar] [CrossRef]
- Oliveira, P.H.; Ribis, J.W.; Garrett, E.M.; Trzilova, D.; Kim, A.; Sekulovic, O.; Mead, E.A.; Pak, T.; Zhu, S.; Deikus, G.; et al. Epigenomic Characterization of Clostridioides Difficile Finds a Conserved DNA Methyltransferase That Mediates Sporulation and Pathogenesis. Nat. Microbiol. 2019, 5, 166–180. [Google Scholar] [CrossRef]
- Dighiesh, H.S.; Alharbi, N.A.; Awlya, O.F.; Alhassani, W.E.; Hassoubah, S.A.; Albaqami, N.M.; Aljahdali, N.; Abd El-Aziz, Y.M.; Eissa, E.S.H.; Munir, M.B.; et al. Dietary Multi-Strains Bacillus Spp. Enhanced Growth Performance, Blood Metabolites, Digestive Tissues Histology, Gene Expression of Oreochromis niloticus, and Resistance to Aspergillus flavus Infection. Aquac. Int. 2024, 32, 7065–7086. [Google Scholar] [CrossRef]
- Chen, W.; Yu, L.; Zhu, B.; Qin, L. Dendrobium Officinale Endophytes May Colonize the Intestinal Tract and Regulate Gut Microbiota in Mice. Evid. Based Complement. Altern. Med. 2022, 2022, 2607506. [Google Scholar] [CrossRef] [PubMed]
- Dahl, S.A.; Seifert, J.; Camarinha-Silva, A.; Cheng, Y.C.; Hernández-Arriaga, A.; Hudler, M.; Windisch, W.; König, A. Microbiota and Nutrient Portraits of European Roe Deer (Capreolus capreolus) Rumen Contents in Characteristic Southern German Habitats. Microb. Ecol. 2023, 86, 3082–3096. [Google Scholar] [CrossRef]
- Víquez-R, L.; Henrich, M.; Riegel, V.; Bader, M.; Wilhelm, K.; Heurich, M.; Sommer, S. A Taste of Wilderness: Supplementary Feeding of Red Deer (Cervus elaphus) Increases Individual Bacterial Microbiota Diversity but Lowers Abundance of Important Gut Symbionts. Anim. Microbiome 2024, 6, 28. [Google Scholar] [CrossRef]
- Guo, J.; Li, Z.; Jin, Y.; Sun, Y.; Wang, B.; Liu, X.; Yuan, Z.; Zhang, W.; Zhang, C.; Zhang, M. The Gut Microbial Differences between Pre-Released and Wild Red Deer: Firmicutes Abundance May Affect Wild Adaptation after Release. Front. Microbiol. 2024, 15, 1401373. [Google Scholar] [CrossRef]
- Kliszcz, A.; Kuźniar, A.; Wolińska, A.; Jurczyk, S.; Kruczyńska, A.; Puła, J. Future Frontiers of Agroecosystem Management: Shifts in Microbial Community after Passage through the Gut of Earthworms Reveals Enhanced Abundance of Cereal Endophytes. Appl. Soil. Ecol. 2024, 203, 105666. [Google Scholar] [CrossRef]
- Banerjee, S.; van der Heijden, M.G.A. Soil microbiomes and one health. Nat. Rev. Microbiol. 2023, 21, 6–20. [Google Scholar] [CrossRef]
- Fu, Y.; Dou, Q.; Smalla, K.; Wang, Y.; Johnson, T.A.; Brandt, K.K.; Mei, Z.; Liao, M.; Hashsham, S.A.; Schäffer, A.; et al. Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. mLife 2023, 2, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Kuthyar, S.; Reese, A.T. Variation in Microbial Exposure at the Human-Animal Interface and the Implications for Microbiome-Mediated Health Outcome. mSystems 2021, 6, e0056721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christudas, S.; Devaraj, R.; Xu, B. Different impacts of plant proteins and animal proteins on human health through altering gut microbiota. Funct. Foods Health Dis. 2020, 10, 228–243. [Google Scholar] [CrossRef]
- Haberecht, S.; Bajagai, Y.S.; Moore, R.J.; Van, T.T.H.; Stanley, D. Poultry feeds carry diverse microbial communities that influence chicken intestinal microbiota colonisation and maturation. AMB Express 2020, 10, 143. [Google Scholar] [CrossRef]
- Bruijning, M.; Henry, L.P.; Forsberg, S.K.G.; Metcalf, C.J.E.; Ayroles, J.F. Natural selection for imprecise vertical transmission in host–microbiota systems. Nat. Ecol. Evol. 2021, 6, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Gellman, R.H.; Olm, M.R.; Terrapon, N.; Enam, F.; Higginbottom, S.K.; Sonnenburg, J.L.; Sonnenburg, E.D. Hadza Prevotella require diet-derived microbiota-accessible carbohydrates to persist in mice. Cell Rep. 2023, 42, 113233. [Google Scholar] [CrossRef]
- Dasgupta, M.H.; Burragoni, S.; Amrutha, S.; Muthupandi, M.; Muneera Parveen, A.B.; Sivakumar Ulaganathan, V.K. Diversity of bacterial endophyte in Eucalyptus clones and their implications in water stress tolerance. Microbiol. Res. 2020, 241, 126579. [Google Scholar] [CrossRef]
- Dubey, A.; Malla, M.A.; Kumar, A.; Dayanandan, S.; Khan, M.L. Plants Endophytes: Unveiling Hidden Agenda for Bioprospecting toward Sustainable Agriculture. Crit. Rev. Biotechnol. 2020, 40, 1210–1231. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Selvaraj, G.; Bais, H.P. Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem. Plant Physiol. 2014, 166, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, R.; Bhutani, N.; Bhardwaj, A.; Suneja, P. Functional Diversity of Cultivable endophytes from Cicer Arietinum and Pisum sativum: Bioprospecting Their Plant Growth Potential. Biocatal. Agric. Biotechnol. 2019, 20, 101229. [Google Scholar] [CrossRef]
- Yadav, N.; Garg, V.K.; Chhillar, A.K.; Rana, J.S. Recent Advances in Nanotechnology for the Improvement of Conventional Agricultural Systems: A Review. Plant Nano Biol. 2023, 4, 100032. [Google Scholar] [CrossRef]
- Romera, F.J.; García, M.J.; Lucena, C.; Martínez-Medina, A.; Aparicio, M.A.; Ramos, J.; Alcántara, E.; Angulo, M.; Pérez-Vicente, R. Induced Systemic Resistance (ISR) and Fe Deficiency Responses in Dicot Plants. Front. Plant Sci. 2019, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Ahmed, T.; Ibrahim, E.; Rizwan, M.; Chong, K.P.; Yong, J.W.H. A Review on Mechanisms and Prospects of Endophytic Bacteria in Biocontrol of Plant Pathogenic Fungi and Their Plant Growth-Promoting Activities. Heliyon 2024, 10, e31573. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.J.; Singh, R.K.; Singh, P.; Li, D.P.; Sharma, A.; Xing, Y.X.; Song, X.P.; Yang, L.T.; Li, Y.R. Complete Genome Sequence of Enterobacter roggenkampii ED5, a Nitrogen Fixing Plant Growth Promoting Endophytic Bacterium with Biocontrol and Stress Tolerance Properties, Isolated From Sugarcane Root. Front. Microbiol. 2020, 11, 580081. [Google Scholar] [CrossRef] [PubMed]
- Rowińska, P.; Gutarowska, B.; Janas, R.; Szulc, J. Biopreparations for the Decomposition of Crop Residues. Microb. Biotechnol. 2024, 17, e14534. [Google Scholar] [CrossRef]
- Grzyb, A.; Waraczewska, Z.; Niewiadomska, A.; Wolna-Maruwka, A. Czym Są Biopreparaty i Jakie Jest Ich Zastosowanie? Nauka Przyr. Technol. 2019, 13, 7. [Google Scholar] [CrossRef]
- Joshi, N.; Parewa, H.P.; Joshi, S.; Sharma, J.K.; Shukla, U.N.; Paliwal, A.; Gupta, V. Use of Microbial Biostimulants in Organic Farming. Adv. Org. Farming Agron. Soil Manag. Pract. 2021, 59–73. [Google Scholar] [CrossRef]
- Maiorov, P.S.; Lyashenko, E.A.; Feoktistova, N.A.; Suldina, E.V.; Atamanova, E.E. Selection of the Most Prospective Strains for Inclusion in the Composition of a Biopreparation on the Basis of Cellulose-Destroying Microorganisms. IOP Conf. Ser. Earth Environ. Sci. 2023, 1229, 012031. [Google Scholar] [CrossRef]
- Zhao, X.; Song, P.; Hou, D.; Li, Z.; Hu, Z. Antifungal Activity, Identification and Biosynthetic Potential Analysis of Fungi against Rhizoctonia Cerealis. Ann. Microbiol. 2021, 71, 41. [Google Scholar] [CrossRef]
- Nakielska, M.; Feledyn-Szewczyk, B.; Berbeć, A.K.; Frąc, M. Microbial Biopreparations and Their Impact on Organic Strawberry (Fragaria × Ananassa Duch.) Yields and Fungal Infestation. Sustainability 2024, 16, 7559. [Google Scholar] [CrossRef]
- Sosnowska, D. Parasitic and Antagonistic Fungi in Biological Plant Protection in Poland. Prog. Plant Prot. 2019, 59, 223–231. [Google Scholar] [CrossRef]
- Oszust, K.; Pylak, M.; Frac, M. Trichoderma-Based Biopreparation with Prebiotics Supplementation for the Naturalization of Raspberry Plant Rhizosphere. Int. J. Mol. Sci. 2021, 22, 6356. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Guo, H.; Zhang, K.; Zhao, M.; Ruan, J.; Chen, J. Trichoderma and Its Role in Biological Control of Plant Fungal and Nematode Disease. Front. Microbiol. 2023, 14, 1160551. [Google Scholar] [CrossRef]
- Maitra, S.; Praharaj, S.; Brestic, M.; Sahoo, R.K.; Sagar, L.; Shankar, T.; Palai, J.B.; Sahoo, U.; Sairam, M.; Pramanick, B.; et al. Rhizobium as Biotechnological Tools for Green Solutions: An Environment-Friendly Approach for Sustainable Crop Production in the Modern Era of Climate Change. Curr. Microbiol. 2023, 80, 219. [Google Scholar] [CrossRef]
- Al Tawaha, A.R.M.; Karnwal, A.; Pati, S.; Al-Tawaha, A.R.; Upadhyay, A.K.; Singh, A.; Rajput, V.D.; Ghazaryan, K.; Minkina, T.; Ali, I.; et al. Biofertilizers: A Sustainable Solution for Enhancing Soil Fertility and Crop Productivity. In Sustainable Agriculture under Drought Stress; Academic Press: Cambridge, MA, USA, 2025; pp. 209–217. [Google Scholar] [CrossRef]
- Kandasamy, G.D.; Kathirvel, P. Insights into Bacterial Endophytic Diversity and Isolation with a Focus on Their Potential Applications—A Review. Microbiol. Res. 2023, 266, 127256. [Google Scholar] [CrossRef] [PubMed]
- Aloo, B.N.; Mbega, E.R.; Tumuhairwe, J.B.; Makumba, B.A. Advancement and Practical Applications of Rhizobacterial Biofertilizers for Sustainable Crop Production in Sub-Saharan Africa. Agric. Food Secur. 2021, 10, 57. [Google Scholar] [CrossRef]
- Fahde, S.; Boughribil, S.; Sijilmassi, B.; Amri, A. Rhizobia: A Promising Source of Plant Growth-Promoting Molecules and Their Non-Legume Interactions: Examining Applications and Mechanisms. Agriculture 2023, 13, 1279. [Google Scholar] [CrossRef]
- Dzvene, A.R.; Chiduza, C. Application of Biofertilizers for Enhancing Beneficial Microbiomes in Push–Pull Cropping Systems: A Review. Bacteria 2024, 3, 271–286. [Google Scholar] [CrossRef]
- Pylak, M.; Oszust, K.; Frąc, M. Review Report on the Role of Bioproducts, Biopreparations, Biostimulants and Microbial Inoculants in Organic Production of Fruit. Rev. Environ. Sci. Bio/Technol. 2019, 18, 597–616. [Google Scholar] [CrossRef]
- Kanarek, P.; Breza-Boruta, B.; Bauza-Kaszewska, J.; Lamparski, R. Application of Straw and Biopreparations as a Sustainable Method for Increasing the Organic Carbon Content and Chemical, Physical, and Biological Soil Properties in Spring Barley Culture. Energies 2022, 15, 6903. [Google Scholar] [CrossRef]
- Pacholczak, A.; Nowakowska, K. The Effect of Biostimulators and Indole-3-Butyric Acid on Rooting of Stem Cuttings of Two Ground Cover Roses. Acta Agrobot. 2020, 73, 7314. [Google Scholar] [CrossRef]
- Pânzaru, R.L.; Firoiu, D.; Ionescu, G.H.; Ciobanu, A.; Medelete, D.M.; Pîrvu, R. Organic Agriculture in the Context of 2030 Agenda Implementation in European Union Countries. Sustainability 2023, 15, 10582. [Google Scholar] [CrossRef]
- Haq, I.U.; Rahim, K.; Yahya, G.; Ijaz, B.; Maryam, S.; Paker, N.P. Eco-Smart Biocontrol Strategies Utilizing Potent Microbes for Sustainable Management of Phytopathogenic Diseases. Biotechnol. Rep. 2024, 44, e00859. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.W.; Yang, L.; Yousaf, M.I.; Sami, A.; Mei, X.D.; Shah, L.; Rehman, S.; Xue, L.; Si, H.; Ma, C. Effects of Heat Stress on Growth, Physiology of Plants, Yield and Grain Quality of Different Spring Wheat (Triticum aestivum L.) Genotypes. Sustainability 2021, 13, 2972. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Fadiji, A.E.; Ayilara, M.S.; Igiehon, O.N.; Nwachukwu, B.C.; Babalola, O.O. Strategies to Enhance the Use of Endophytes as Bioinoculants in Agriculture. Horticulturae 2022, 8, 498. [Google Scholar] [CrossRef]
- Li, Z.; Xiong, K.; Wen, W.; Li, L.; Xu, D. Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications. Int. J. Mol. Sci. 2023, 24, 1153. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszczyk, E. The Introduction of Biostimulants on the Polish Market. The Present Situation and Legal Requirements. Przem. Chem. 2015, 94, 1841–1844. [Google Scholar] [CrossRef]
- Regulation (EC) No 1107/2009; Plant Protection Products. European Agency for Safety and Health at Work: Bilbao, Spain, 2009. Available online: https://osha.europa.eu/pl/legislation/directives/regulation-ec-no-1107-2009-plant-protection-products (accessed on 29 November 2024).
- Priya, A.K.; Alagumalai, A.; Balaji, D.; Song, H. Bio-Based Agricultural Products: A Sustainable Alternative to Agrochemicals for Promoting a Circular Economy. RSC Sustain. 2023, 1, 746–762. [Google Scholar] [CrossRef]
- Approval of Biopesticides—AGRINFO Platform. Available online: https://agrinfo.eu/book-of-reports/approval-of-microorganisms-used-in-plant-protection-products/ (accessed on 29 November 2024).
Phylum/Class/Species | Host | References |
---|---|---|
BACTERIA | ||
α-Proteobacteria | ||
Rhizobium wenxiniae sp. | maize | [34] |
Rhizobium sp. MP1 | chickpea | [35] |
Acetobacter diazotrophicus | maize, wheat, rice | [36] |
Azospirillum sp. | ||
β-Proteobacteria | ||
Burkholderia sp. GE 17-7 | ginseng | [37] |
Achromobacter insolitus | wheat | [38] |
Herbaspirillum seropedicae | rice | [39] |
γ-Proteobacteria | ||
Acinetobacter xylosoxidans | pink cataranth | [40] |
Citrobacter sp. RPT | fern | [41] |
Enterobacter ludwigii | tomato | [42] |
Actinobacteria | ||
Corynebacterium sp. | maize | [43] |
Microbacterium sp. LKL04 | rod millet | [44] |
Micrococcus sp. | tomato | [45] |
Firmicutes | ||
Bacillus sp. | wheat | [46] |
Staphylococcus sp. | tomato | [42] |
FUNGI | ||
Class 1 | ||
Epichloë sp. | tall fescue | [47] |
Pestalotiopsis sp. 9143 | cypress plants | [48] |
Class 2 | ||
Phoma sp. | tropical plants | [49] |
Fusarium spp. | grasses, legumes | [50] |
Aspergillus spp. | maize, rice | [51] |
Neothypodium spp. | grasses, Poaceae | [52] |
Class 3 | ||
Ganoderma spp. | tree species | [53] |
Tricholoma spp. | trees and shrubs | [54] |
Class 4 | ||
Mortierella spp. | maize | [55] |
Rhizopus spp. | wheat, potato | [55] |
Microorganism | Animal | Literature |
---|---|---|
Bacillus spp. | Oreochromis niloticus | [134] |
Pseudomonas mosselii, Trichocladium asperum, Titata maxilliformis, Clonostachys epichloe, and Rhodotorula babjevae | Mouse | [135] |
Lactobacillus plantarum | Intestinal tract of different animals | [127] |
Latilactobacillus, Syntrophococcus, Streptococcus | Capreolus capreolus | [136] |
Flavobacteriaceae. | Cervus elaphus | [137] |
Pseudomonadaceae | Cervus elaphus | [137] |
Clostridia | Amur tiger | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźniar, A.; Kruczyńska, A.; Włodarczyk, K.; Vangronsveld, J.; Wolińska, A. Endophytes as Permanent or Temporal Inhabitants of Different Ecological Niches in Sustainable Agriculture. Appl. Sci. 2025, 15, 1253. https://doi.org/10.3390/app15031253
Kuźniar A, Kruczyńska A, Włodarczyk K, Vangronsveld J, Wolińska A. Endophytes as Permanent or Temporal Inhabitants of Different Ecological Niches in Sustainable Agriculture. Applied Sciences. 2025; 15(3):1253. https://doi.org/10.3390/app15031253
Chicago/Turabian StyleKuźniar, Agnieszka, Anna Kruczyńska, Kinga Włodarczyk, Jaco Vangronsveld, and Agnieszka Wolińska. 2025. "Endophytes as Permanent or Temporal Inhabitants of Different Ecological Niches in Sustainable Agriculture" Applied Sciences 15, no. 3: 1253. https://doi.org/10.3390/app15031253
APA StyleKuźniar, A., Kruczyńska, A., Włodarczyk, K., Vangronsveld, J., & Wolińska, A. (2025). Endophytes as Permanent or Temporal Inhabitants of Different Ecological Niches in Sustainable Agriculture. Applied Sciences, 15(3), 1253. https://doi.org/10.3390/app15031253