Open-Pit Bench Blasting Fragmentation Prediction Based on Stacking Integrated Strategy
Abstract
:1. Introduction
2. Ensemble Machine Learning (ML) Models
2.1. Bagging and Boosting
2.2. Stacking Strategy
2.3. Base Learner
2.3.1. Random Forest
2.3.2. XGBoost
2.3.3. SVM
3. Database
3.1. Data Description
3.2. Model Validation and Evaluation
4. Results and Discussion
4.1. Model Construction and Prediction Results
4.2. Model Performance Analysis and Discussion
4.3. Engineering Validation Results of the Model
5. Conclusion and Summary
- The stacking integrated model outperformed the single models and had higher predictive accuracy. The model evaluation yielded an R2 value of 0.943, with MSE, RMSE, and MAE values of 0.00269, 0.05187, and 0.03320, respectively, on the training set; and 0.00197, 0.04435, and 0.03687, respectively, on the testing set;
- From the feature importance evaluation results of the two methods, it can be seen that in the process of constructing the model, the input feature E has the highest influence on the predicted fragmentation size, followed by T/B and XB;
- Compared with the prediction methods of other researchers, the prediction method established in this study better integrates the advantages of individual algorithms. The engineering verification results also demonstrated that the constructed algorithm has good predictive accuracy, and its prediction results can provide references for blasting design.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
R2 | Coefficient of Determination |
MSE | Mean Square Error |
RMSE | Root Mean Square Error |
MAE | Mean Absolute Error |
KCO | Kuznetsov-Cunningham-Ouchterlony |
BPNN | Back Propagation Neural Network |
ANN | Artificial Neural Network |
SVM | Support Vector Machine |
ANFIS | Adaptive Network-based Fuzzy Inference System |
PCA | Principal Component Analysis |
GWO | Grey Wolf Optimization |
CNN | Convolutional Neural Network |
MLP | Multilayer Perceptron |
PSO | Particle Swarm Optimization |
SVR | Support Vector Regression |
KNN | K-Nearest Neighbor |
GP | Gaussian Process |
RCS | Rock Compressive Strength |
References
- Abbaspour, H.; Drebenstedt, C.; Badroddin, M.; Maghaminik, A. Optimized design of drilling and blasting operations in open pit mines under technical and economic uncertainties by system dynamic modelling. Int. J. Min. Sci. Technol. 2018, 28, 839–848. [Google Scholar] [CrossRef]
- Kanchibotla, S.S.; Valery, W.; Morrell, S. Modeling fines in blast fragmentation and its impact on crushing and grinding. In Proceedings of the Explo’99: A Conference on Rock Breaking, Kalgoorlie, WA, Australia, 7–11 November 1999; AusIMM: Melbourne, Australia, 1999. [Google Scholar]
- Dimitraki, L.; Christaras, B.; Marinos, V.; Vlahavas, I.; Arampelos, N. Predicting the average size of blasted rocks in aggregate quarries using artificial neural networks. Bull. Eng. Geol. Environ. 2019, 78, 2717–2729. [Google Scholar] [CrossRef]
- Hudaverdi, T.; Kulatilake, P.; Kuzu, C. Prediction of blast fragmentation using multivariate analysis procedures. Int. J. Numer. Anal. Methods Geomech. 2011, 35, 1318–1333. [Google Scholar] [CrossRef]
- Chandrahas, N.S.; Choudhary, B.S.; Teja, M.V.; Venkataramayya, M.S.; Prasad, N.S.R.K. XGBoost Algorithm to Simultaneous Prediction of Rock Fragmentation and Induced Ground Vibration Using Unique Blast Data. Appl. Sci. 2022, 12, 5269. [Google Scholar] [CrossRef]
- Peleg, M. Determination of the parameters of the Rosin-Rammler and beta distributions from their mode and variance using equation-solving software. Powder Technol. 1996, 87, 181–184. [Google Scholar] [CrossRef]
- Kuznetsov, V.M. The mean diameter of the fragments formed by blasting rock. Sov. Min. Sci. 1973, 9, 144–148. [Google Scholar] [CrossRef]
- Cunningham, C.V.B. The kuz-ram fragmentation model—20 years on. In Brighton Conference Proceedings; European Federation of Explosives Engineer: Brighton, UK, 2005. [Google Scholar]
- Ouchterlony, F. The Swebrec function: Linking fragmentation by blasting and crushing. Min. Technol. 2005, 114, 29–44. [Google Scholar] [CrossRef]
- Mehrdanesh, A.; Monjezi, M.; Sayadi, A.R. Evaluation of effect of rock mass properties on fragmentation using robust techniques. Eng. Comput. 2017, 34, 253–260. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Monjezi, M.; Khalesi, M.R.; Armaghani, D.J. Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bull. Eng. Geol. Environ. 2016, 75, 27–36. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Amnieh, H.B.; Arab, H.; Zamzam, M.S. Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Comput. Appl. 2018, 30, 1015–1024. [Google Scholar] [CrossRef]
- Armaghani, D.J. Rock Fragmentation Prediction through a New Hybrid Model Based on Imperial Competitive Algorithm and Neural Network. Smart Constr. Res. 2018, 2, 1–12. [Google Scholar]
- Cui, X.J.; Li, Q.Y.; Tao, M.; Hong, Z.X.; Zhao, M.S.; Li, J.; Zhou, J.M.; Yu, H.B. Research on Explosive-Rock Matching System based on XGBoost. Blasting 2023, 40, 31–38+58. [Google Scholar]
- Li, C.Q.; Zhou, J.; Du, K. Towards lightweight excavation: Machine learning exploration of rock size distribution prediction after tunnel blasting. J. Comput. Sci. 2024, 78, 20. [Google Scholar] [CrossRef]
- Rui, Y.C.; Chen, J.; Chen, J.K.; Qiu, J.D.; Zhou, Z.L.; Wang, W.Z.; Fan, J.Y. A robust triaxial localization method of AE source using refraction path. Int. J. Min. Sci. Technol. 2024, 34, 521–530. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.K.; Rui, Y.C.; Pu, Y.Y. Joint Inversion of AE/MS Sources and Velocity with Full Measurements and Residual Estimation. Rock Mech. Rock Eng. 2024, 57, 7371–7386. [Google Scholar] [CrossRef]
- Chen, J.; Tong, J.; Rui, Y.C.; Cui, Y.; Pu, Y.Y.; Du, J.S.; Apel, D.B. Step-path failure mechanism and stability analysis of water-bearing rock slopes based on particle flow simulation. Theor. Appl. Fract. Mech. 2024, 131, 14. [Google Scholar] [CrossRef]
- Kulatilake, P.; Qiong, W.; Hudaverdi, T.; Kuzu, C. Mean particle size prediction in rock blast fragmentation using neural networks. Eng. Geol. 2010, 114, 298–311. [Google Scholar] [CrossRef]
- Monjezi, M.; Mohamadi, H.A.; Barati, B.; Khandelwal, M. Application of soft computing in predicting rock fragmentation to reduce environmental blasting side effects. Arab. J. Geosci. 2014, 7, 505–511. [Google Scholar] [CrossRef]
- Philip, D.; Abbaspour, H.; Kansake, B.A.; Drebenstedt, C. Unraveling the Capability of Artificial Intelligence for Prediction of Rock Fragmentation. In Proceedings of the REAL TIME MINING—Conference on Innovation on Raw Material Extraction, Freiberg, Germany, 27 March 2019. [Google Scholar]
- Esmaeili, M.; Salimi, A.; Drebenstedt, C.; Abbaszadeh, M.; Bazzazi, A.A. Application of PCA, SVR, and ANFIS for modeling of rock fragmentation. Arab. J. Geosci. 2015, 8, 6881–6893. [Google Scholar] [CrossRef]
- Asl, P.F.; Monjezi, M.; Hamidi, J.K.; Armaghani, D.J. Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm. Eng. Comput. 2018, 34, 241–251. [Google Scholar] [CrossRef]
- Jia, Z.Z.; Song, Z.L.; Fan, J.F.; Jiang, J.Y. Prediction of Blasting Fragmentation Based on GWO-ELM. Shock. Vib. 2022, 2022, 7385456. [Google Scholar] [CrossRef]
- Rong, K.; Xu, X.; Wang, H.B.; Yang, J. Prediction of the mean fragment size in mine blasting operations by deep learning and grey wolf optimization algorithm. Earth Sci. Inform. 2024, 17, 2903–2919. [Google Scholar] [CrossRef]
- Li, E.M.; Yang, F.H.; Ren, M.H.; Zhang, X.L.; Zhou, J.; Khandelwal, M. Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms. J. Rock Mech. Geotech. Eng. 2021, 13, 1380–1397. [Google Scholar] [CrossRef]
- Barkhordari, M.S.; Armaghani, D.J.; Fakharians, P. Ensemble machine learning models for prediction of flyrock due to quarry blasting. Int. J. Environ. Sci. Technol. 2022, 19, 8661–8676. [Google Scholar] [CrossRef]
- Khan, K.; Ahmad, W.; Amin, M.N.; Ahmad, A.; Nazar, S.; Alabdullah, A.A.; Arab, A.M.A. Exploring the Use of Waste Marble Powder in Concrete and Predicting Its Strength with Different Advanced Algorithms. Materials 2022, 15, 4108. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Asteris, P.G.; Mohammed, A.S.; Alexakis, D.E.; Mamou, A.; Armaghani, D.J. Introducing stacking machine learning approaches for the prediction of rock deformation. Transp. Geotech. 2022, 34, 100756. [Google Scholar] [CrossRef]
- Kadingdi, F.A.; Ayawah, P.E.A.; Azure, J.W.A.; Bruno, K.A.; Kaba, A.G.A.; Frimpong, S. Stacked Generalization for Improved Prediction of Ground Vibration from Blasting in Open-Pit Mine Operations. Min. Metall. Explor. 2022, 39, 2351–2363. [Google Scholar] [CrossRef]
- Wu, L.Y.; Li, J.H.; Zhang, J.W.; Wang, A.F.; Tong, J.B.; Ding, F.; Li, M.; Feng, Y.; Li, H. Prediction model for the compressive strength of rock based on stacking ensemble learning and shapley additive explanations. Bull. Eng. Geol. Environ. 2024, 83, 439. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Yu, L.; Wu, T.J. Assemble learning: A survey of boosting algrithms. Pattern Recognit. Artif. Intell. 2004, 17, 52–59. [Google Scholar]
- Breiman, L. Stacked regressions. Mach. Learn. 1996, 24, 49–64. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Han, H.; Armaghani, D.J.; Tarinejad, R.; Zhou, J.; Tahir, M.M. Random Forest and Bayesian Network Techniques for Probabilistic Prediction of Flyrock Induced by Blasting in Quarry Sites. Nat. Resour. Res. 2020, 29, 655–667. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.Z.; Qiu, X.Y.; Zhou, J.; Chen, X.; Gou, Y.G. Optimization of postblast ore boundary determination using a novel sine cosine algorithm-based random forest technique and Monte Carlo simulation. Eng. Optim. 2021, 53, 1467–1482. [Google Scholar] [CrossRef]
- Zhou, J.; Asteris, P.G.; Armaghani, D.J.; Pham, B. Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models. Soil. Dyn. Earthq. Eng. 2020, 139, 106390. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M. XGBoost: Extreme Gradient Boosting. arXiv 2016, arXiv:1603.02754. [Google Scholar]
- Nabavi, Z.; Mirzehi, M.; Dehghani, H.; Ashtari, P. A Hybrid Model for Back-Break Prediction using XGBoost Machine learning and Metaheuristic Algorithms in Chadormalu Iron Mine. J. Min. Environ. 2023, 14, 689–712. [Google Scholar]
- Qiu, Y.G.; Zhou, J.; Khandelwal, M.; Yang, H.T.; Yang, P.X.; Li, C.Q. Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration. Eng. Comput. 2022, 38 (Suppl. S5), 4145–4162. [Google Scholar] [CrossRef]
- Yu, Q.; Monjezi, M.; Mohammed, A.S.; Dehghani, H.; Armaghani, D.J.; Ulrikh, D.V. Optimized Support Vector Machines Combined with Evolutionary Random Forest for Prediction of Back-Break Caused by Blasting Operation. Sustainability 2021, 13, 12797. [Google Scholar] [CrossRef]
- Mehrdanesh, A.; Monjezi, M.; Khandelwal, M.; Bayat, P. Application of various robust techniques to study and evaluate the role of effective parameters on rock fragmentation. Eng. Comput. 2023, 39, 1317–1327. [Google Scholar] [CrossRef]
- Rad, H.N.; Hasanipanah, M.; Rezaei, M.; Eghlim, A.L. Developing a least squares support vector machine for estimating the blast-induced flyrock. Eng. Comput. 2018, 34, 709–717. [Google Scholar] [CrossRef]
- Xu, G.Q.; Wang, X.Y. Support vector regression optimized by black widow optimization algorithm combining with feature selection by MARS for mining blast vibration prediction. Measurement 2023, 218, 113106. [Google Scholar] [CrossRef]
- Amoako, R.; Jha, A.; Zhong, S. Rock Fragmentation Prediction Using an Artificial Neural Network and Support Vector Regression Hybrid Approach. Mining 2022, 2, 233–247. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.X.; Chen, H.; Khandelwal, M.; Monjezi, M.; Peng, K. Hybridizing five neural-metaheuristic paradigms to predict the pillar stress in bord and pillar method. Front. Public Health 2023, 11, 1119580. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, R.; Qiu, Y.G.; Khandelwal, M. A true triaxial strength criterion for rocks by gene expression programming. J. Rock Mech. Geotech. Eng. 2023, 15, 2508–2520. [Google Scholar] [CrossRef]
- Jern, M. Determination of the in situ block size distribution in fractured rock, an approach for comparing in-situ rock with rock sieve analysis. Rock Mech. Rock Eng. 2004, 37, 391–401. [Google Scholar] [CrossRef]
- Tao, M.; Xu, Y.Q.; Zhao, R.; Liu, Y.L.; Wu, C.Q. Energy control and block performance optimization of bench blasting. Int. J. Rock. Mech. Min. Sci. 2024, 180, 105830. [Google Scholar] [CrossRef]
- Mpofu, M.; Ngobese, S.; Maphalala, B.; Roberts, D.; Khan, S. The influence of stemming practice on ground vibration and air blast. J. S. Afr. Inst. Min. Metall. 2021, 121, 1–10. [Google Scholar] [CrossRef]
- Zhao, J.; Li, D.; Zhou, J.; Armaghani, D.J.; Zhou, A.H. Performance evaluation of rock fragmentation prediction based on RF-BOA, AdaBoost-BOA, GBoost-BOA, and ERT-BOA hybrid models. Deep. Undergr. Sci. Eng. 2024; early view. [Google Scholar]
- Gao, W.; Karbasi, M.; Hasanipanah, M.; Zhang, X.; Guo, J. Developing GPR model for forecasting the rock fragmentation in surface mines. Eng. Comput. 2018, 34, 339–345. [Google Scholar] [CrossRef]
- Shams, S.; Monjezi, M.; Majd, V.J.; Armaghani, D.J. Application of fuzzy inference system for prediction of rock fragmentation induced by blasting. Arab. J. Geosci. 2015, 8, 10819–10832. [Google Scholar] [CrossRef]
- Mojtahedi, S.F.F.; Ebtehaj, I.; Hasanipanah, M.; Bonakdari, H.; Amnieh, H.B. Proposing a novel hybrid intelligent model for the simulation of particle size distribution resulting from blasting. Eng. Comput. 2019, 35, 47–56. [Google Scholar] [CrossRef]
- Xie, C.Y.; Nguyen, H.; Bui, X.N.; Choi, Y.S.; Zhou, J.; Thao, N.T. Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms. Geosci. Front. 2021, 12, 101108. [Google Scholar] [CrossRef]
Parameters | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
S/B | 1.00 | 1.75 | 1.20 | 0.109 |
H/B | 1.33 | 6.82 | 3.44 | 1.64 |
B/D | 17.98 | 39.47 | 27.21 | 4.77 |
T/B | 0.50 | 4.67 | 1.27 | 0.688 |
Pf(kg/m3) | 0.22 | 1.26 | 0.53 | 0.238 |
XB(m) | 0.02 | 2.35 | 1.17 | 0.479 |
E(GPa) | 9.57 | 60.00 | 30.74 | 17.72 |
Model | True Value | Predicted Value |
---|---|---|
Random Forest | 0.44 | 0.4154 |
0.1 | 0.1259 | |
0.35 | 0.4042 | |
0.25 | 0.2578 | |
0.74 | 0.6014 | |
Support Vector Machine | 0.44 | 0.2504 |
0.1 | 0.1826 | |
0.35 | 0.2503 | |
0.25 | 0.3287 | |
0.74 | 0.4342 | |
XGBoost | 0.44 | 0.3273 |
0.1 | 0.2011 | |
0.35 | 0.2740 | |
0.25 | 0.2437 | |
0.74 | 0.7453 |
MSE | RMSE | MAE | |
---|---|---|---|
Training set | 0.00269 | 0.05187 | 0.03320 |
Testing set | 0.00197 | 0.04435 | 0.03687 |
No. | B (m) | S (m) | H (m) | D (mm) | T (m) | Pf (kg/m3) | XB (m) | E (GPa) | X50 (m) |
---|---|---|---|---|---|---|---|---|---|
1 | 7 | 8.5 | 15 | 250 | 7.5 | 0.62 | 1.11 | 5.6 | 0.1456 |
2 | 7 | 9 | 15 | 250 | 7.5 | 0.64 | 1.11 | 5.6 | 0.163 |
3 | 7 | 10 | 15 | 250 | 7.5 | 0.61 | 1.11 | 5.6 | 0.1962 |
4 | 7 | 9.5 | 15 | 250 | 7.5 | 0.57 | 1.11 | 5.6 | 0.1997 |
5 | 7 | 9.5 | 15 | 250 | 7.5 | 0.62 | 1.11 | 5.6 | 0.1786 |
No. | S/B | H/B | B/D | T/B | Pf | XB | E |
---|---|---|---|---|---|---|---|
1 | 1.2143 | 2.1429 | 28 | 1.0714 | 0.62 | 1.11 | 5.6 |
2 | 1.2857 | 2.1429 | 28 | 1.0714 | 0.64 | 1.11 | 5.6 |
3 | 1.4286 | 2.1429 | 28 | 1.0714 | 0.61 | 1.11 | 5.6 |
4 | 1.3571 | 2.1429 | 28 | 1.0714 | 0.57 | 1.11 | 5.6 |
5 | 1.3571 | 2.1429 | 28 | 1.0714 | 0.62 | 1.11 | 5.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, Y.; Zhou, Z.; Zhao, R.; Yang, Z.; Zou, Y. Open-Pit Bench Blasting Fragmentation Prediction Based on Stacking Integrated Strategy. Appl. Sci. 2025, 15, 1254. https://doi.org/10.3390/app15031254
Sui Y, Zhou Z, Zhao R, Yang Z, Zou Y. Open-Pit Bench Blasting Fragmentation Prediction Based on Stacking Integrated Strategy. Applied Sciences. 2025; 15(3):1254. https://doi.org/10.3390/app15031254
Chicago/Turabian StyleSui, Yikun, Zhiyong Zhou, Rui Zhao, Zheng Yang, and Yang Zou. 2025. "Open-Pit Bench Blasting Fragmentation Prediction Based on Stacking Integrated Strategy" Applied Sciences 15, no. 3: 1254. https://doi.org/10.3390/app15031254
APA StyleSui, Y., Zhou, Z., Zhao, R., Yang, Z., & Zou, Y. (2025). Open-Pit Bench Blasting Fragmentation Prediction Based on Stacking Integrated Strategy. Applied Sciences, 15(3), 1254. https://doi.org/10.3390/app15031254