Predicting the Zinc Content in Rice from Farmland Using Machine Learning Models: Insights from Universal Geochemical Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Chemical Analysis
2.4. Models’ Development
2.4.1. Artificial Neural Network (ANN)
2.4.2. Random Forest (RF)
2.5. Models’ Evaluation
3. Results and Discussion
3.1. Zn Content Characteristics in the Soil–Rice Ecosystem
3.2. Influence of Soil Properties on Zn Absorption by Rice Grains
3.3. Development of Prediction Models
3.4. Model Validation
3.5. Model Robustness and Generalization
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sturikova, H.; Krystofova, O.; Huska, D.; Adam, V. Zinc, Zinc Nanoparticles and Plants. J. Hazard. Mater. 2018, 349, 101–110. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Yang, P.; Chen, J.; Zhu, L.; Zhao, Y.; Guo, J. Characteristics of zinc absorption and distribution after silking in the different maize inbred lines. J. Hebei Agric. Univ. 2018, 41, 14–20. [Google Scholar] [CrossRef]
- Gupta, S.; Brazier, A.K.M.; Lowe, N.M. Zinc Deficiency in Low- and Middle-income Countries: Prevalence and Approaches for Mitigation. J. Hum. Nutr. Diet. 2020, 33, 624–643. [Google Scholar] [CrossRef]
- Singh, A.P.; Johari, D. Hymenophyllum javanicum Spreng: An Addition to the Pteridophytic Flora of Central India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 531–537. [Google Scholar] [CrossRef]
- Prom-U-Thai, C.; Rashid, A.; Ram, H.; Zou, C.; Guilherme, L.R.G.; Corguinha, A.P.B.; Guo, S.; Kaur, C.; Naeem, A.; Yamuangmorn, S.; et al. Simultaneous Biofortification of Rice with Zinc, Iodine, Iron and Selenium Through Foliar Treatment of a Micronutrient Cocktail in Five Countries. Front. Plant Sci. 2020, 11, 589835. [Google Scholar] [CrossRef] [PubMed]
- Utasee, S.; Jamjod, S.; Lordkaew, S.; Prom-U-Thai, C. Improve Anthocyanin and Zinc Concentration in Purple Rice by Nitrogen and Zinc Fertilizer Application. Rice Sci. 2022, 29, 435–450. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic Biofortification of Cereals with Zinc: A Review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Lin, Q.; Zhu, W.; Chen, Z.; Peng, X.; Zhao, S. Progress in Species and Bioavailability of Heavy Metals in Soil. J. Guangdong Univ. Technol. 2013, 30, 113–118. [Google Scholar]
- Wang, Y.; Yu, T.; Yang, Z.; Bo, H.; Lin, Y.; Yang, Q.; Liu, X.; Zhang, Q.; Zhuo, X.; Wu, T. Zinc Concentration Prediction in Rice Grain Using Back-Propagation Neural Network Based on Soil Properties and Safe Utilization of Paddy Soil: A Large-Scale Field Study in Guangxi, China. Sci. Total Environ. 2021, 798, 149270. [Google Scholar] [CrossRef]
- Gu, Q.; Yu, T.; Yang, Z.; Ji, J.; Hou, Q.; Wang, L.; Wei, X.; Zhang, Q. Prediction and Risk Assessment of Five Heavy Metals in Maize and Peanut: A Case Study of Guangxi, China. Environ. Toxicol. Pharmacol. 2019, 70, 103199. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yu, T.; Guan, D.-X.; Li, C.; Li, B.; Liu, X.; Lin, K.; Li, X.; Wang, L.; Yang, Z. Prediction of Cadmium Contents in Rice Grains from Quaternary Sediment-Distributed Farmland Using Field Investigations and Machine Learning. Sci. Total Environ. 2023, 898, 165482. [Google Scholar] [CrossRef]
- Hu, B.; Xue, J.; Zhou, Y.; Shao, S.; Fu, Z.; Li, Y.; Chen, S.; Qi, L.; Shi, Z. Modelling Bioaccumulation of Heavy Metals in Soil-Crop Ecosystems and Identifying Its Controlling Factors Using Machine Learning. Environ. Pollut. 2020, 262, 114308. [Google Scholar] [CrossRef]
- Pyo, J.; Hong, S.M.; Kwon, Y.S.; Kim, M.S.; Cho, K.H. Estimation of Heavy Metals Using Deep Neural Network with Visible and Infrared Spectroscopy of Soil. Sci. Total Environ. 2020, 741, 140162. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Yu, T.; Liu, X.; Yang, Y.; Hou, Q.; Yang, Z.; Ma, X.; Wang, L. Use of Artificial Neural Network to Evaluate Cadmium Contamination in Farmland Soils in a Karst Area with Naturally High Background Values. Environ. Pollut. 2022, 304, 119234. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Zhu, W.; Hao, S.; Hua, M.; Liao, Q.; Jing, Y.; Liu, L.; Gu, X. Prediction Heavy Metals Accumulation Risk in Rice Using Machine Learning and Mapping Pollution Risk. J. Hazard. Mater. 2023, 448, 130879. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yu, T.; Yang, Z.; Zhang, H.; Wu, Z.; Wang, J.; Li, M.; Lei, F. Geochemical characteristics of zinc in soil and prediction of zinc content in maize and rice grains in Linshui County, Sichuan Province. Geol. China 2022, 49, 324–335. [Google Scholar]
- Liu, Z.; Zhang, X.; Dong, Y.; Qing, C.; Cheng, X.; Zhao, W.; Li, X.; Sang, L.; Hai, L. Geochemical characteristics of zinc in soil and prediction of Zn-rich wheat cultivating areas in Weining Plain, Northwest China. Geol. China 2024, 51, 1319–1330. [Google Scholar]
- Guo, R.; Ren, R.; Wang, L.; Zhi, Q.; Yu, T.; Hou, Q.; Yang, Z. Using Machine Learning to Predict Selenium and Cadmium Contents in Rice Grains from Black Shale-Distributed Farmland Area. Sci. Total Environ. 2024, 912, 168802. [Google Scholar] [CrossRef] [PubMed]
- DZ/T 0258-2014; Specification of Multi-Purpose Regional Geochemical Survey (1:250 000). MNR (Ministry of Land and Resources of the People’s Republic of China): Beijing, China, 2014.
- DZ/T 0295-2016; Specification of Land Quality Geochemical Assessment. MNR (Ministry of Land and Resources of the People’s Republic of China): Beijing, China, 2016.
- GB5009.268-2016; National Food Safety Standard for Multi-Element Determination in Foods. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- DZ/T 0279-2016; Regional Geochemical Sample Analysis Methods. MNR (Ministry of Land and Resources of the People’s Republic of China): Beijing, China, 2016.
- Li, M.; Xi, X.; Xiao, G.; Cheng, H.; Yang, Z.; Zhou, G.; Ye, J.; Li, Z. National Multi-Purpose Regional Geochemical Survey in China. J. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Yang, Y.; Li, C.; Yang, Z.; Yu, T.; Jiang, H.; Han, M.; Liu, X.; Wang, J.; Zhang, Q. Application of Cadmium Prediction Models for Rice and Maize in the Safe Utilization of Farmland Associated with Tin Mining in Hezhou, Guangxi, China. Environ. Pollut. 2021, 285, 117202. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hao, H.; Zhang, Z.; Mao, X.; Xu, J.; Lv, Y.; Chen, W.; Ge, D. A Field Study to Estimate Heavy Metal Concentrations in a Soil-Rice System: Application of Graph Neural Networks. Sci. Total Environ. 2022, 832, 155099. [Google Scholar] [CrossRef]
- Yang, G.R.; Wang, X.-J. Artificial Neural Networks for Neuroscientists: A Primer. Neuron 2020, 107, 1048–1070. [Google Scholar] [CrossRef]
- Georgevici, A.I.; Terblanche, M. Neural Networks and Deep Learning: A Brief Introduction. Intensive Care Med. 2019, 45, 712–714. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Sarikhani, M.R.; Safari Sinegani, A.A.; Ahmadi, A.; Keesstra, S. Estimating the Soil Respiration Under Different Land Uses Using Artificial Neural Network and Linear Regression Models. Catena 2019, 174, 371–382. [Google Scholar] [CrossRef]
- Shao, W.; Guan, Q.; Tan, Z.; Luo, H.; Li, H.; Sun, Y.; Ma, Y. Application of BP—ANN Model in Evaluation of Soil Quality in the Arid Area, Northwest China. Soil Tillage Res. 2021, 208, 104907. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Yang, M.; Ren, Z.J. Machine Learning in Environmental Research: Common Pitfalls and Best Practices. Environ. Sci. Technol. 2023, 57, 17671–17689. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Song, J.; Xie, L.; Ma, H.; Li, H.; Ren, J.; Sun, W. Multiaxial Fatigue Life Prediction Method Based on the Back-Propagation Neural Network. Int. J. Fatigue 2023, 166, 107274. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Zhang, W.; Ma, X. Prediction of Plant Uptake and Translocation of Engineered Metallic Nanoparticles by Machine Learning. Environ. Sci. Technol. 2021, 55, 7491–7500. [Google Scholar] [CrossRef]
- Santra, A.K.; Chakraborty, N.; Sen, S. Prediction of Heat Transfer Due to Presence of Copper–Water Nanofluid Using Resilient-Propagation Neural Network. Int. J. Therm. Sci. 2009, 48, 1311–1318. [Google Scholar] [CrossRef]
- Guio Blanco, C.M.; Brito Gomez, V.M.; Crespo, P.; Ließ, M. Spatial Prediction of Soil Water Retention in a Páramo Landscape: Methodological Insight into Machine Learning Using Random Forest. Geoderma 2018, 316, 100–114. [Google Scholar] [CrossRef]
- Carranza, C.; Nolet, C.; Pezij, M.; van der Ploeg, M. Root Zone Soil Moisture Estimation with Random Forest. J. Hydrol. 2021, 593, 125840. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B.; et al. Modeling Flood Susceptibility Using Data-Driven Approaches of Naïve Bayes Tree, Alternating Decision Tree, and Random Forest Methods. Sci. Total Environ. 2020, 701, 134979. [Google Scholar] [CrossRef] [PubMed]
- Chagas, C.D.S.; De Carvalho Junior, W.; Bhering, S.B.; Calderano Filho, B. Spatial Prediction of Soil Surface Texture in a Semiarid Region Using Random Forest and Multiple Linear Regressions. Catena 2016, 139, 232–240. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Ok, Y.S. The Application of Machine Learning Methods for Prediction of Metal Sorption onto Biochars. J. Hazard. Mater. 2019, 378, 120727. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Paramasivan, M.; Al-Mukhtar, M.; Tiyasha, T.; Pyrgaki, K.; Tung, T.M.; Yaseen, Z.M. Prediction of Lead (Pb) Adsorption on Attapulgite Clay Using the Feasibility of Data Intelligence Models. Environ. Sci. Pollut. Res. 2021, 28, 31670–31688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ma, J.; Liu, Q.; Dou, L.; Qu, Y.; Shi, H.; Sun, Y.; Chen, H.; Tian, Y.; Wu, F. Accurate Prediction of Soil Heavy Metal Pollution Using an Improved Machine Learning Method: A Case Study in the Pearl River Delta, China. Environ. Sci. Technol. 2023, 57, 17751–17761. [Google Scholar] [CrossRef] [PubMed]
- Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping Soil Organic Matter Contents at Field Level with Cubist, Random Forest and Kriging. Geoderma 2019, 342, 85–92. [Google Scholar] [CrossRef]
- GB 15618-2018; Soil Environment Quality—Risk Control Standard for Soil Contamination of Agriculture Land. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018.
- Grant, C.A.; Clarke, J.M.; Duguid, S.; Chaney, R.L. Selection and Breeding of Plant Cultivars to Minimize Cadmium Accumulation. Sci. Total Environ. 2008, 390, 301–310. [Google Scholar] [CrossRef]
- Bunquin, M.A.B.; Tandy, S.; Beebout, S.J.; Schulin, R. Influence of Soil Properties on Zinc Solubility Dynamics Under Different Redox Conditions in Non–Calcareous Soils. Pedosphere 2017, 27, 96–105. [Google Scholar] [CrossRef]
- Khampuang, K. Effect of Sulfur Fertilization on Productivity and Grain Zinc Yield of Rice Grown Under Low and Adequate Soil Zinc Applications. Rice Sci. 2023, 30, 632–640. [Google Scholar] [CrossRef]
- Du Laing, G.; Vanthuyne, D.R.J.; Vandecasteele, B.; Tack, F.M.G.; Verloo, M.G. Influence of Hydrological Regime on Pore Water Metal Concentrations in a Contaminated Sediment-Derived Soil. Environ. Pollut. 2007, 147, 615–625. [Google Scholar] [CrossRef] [PubMed]
- De Livera, J.; McLaughlin, M.J.; Hettiarachchi, G.M.; Kirby, J.K.; Beak, D.G. Cadmium Solubility in Paddy Soils: Effects of Soil Oxidation, Metal Sulfides and Competitive Ions. Sci. Total Environ. 2011, 409, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Enya, O.; Heaney, N.; Iniama, G.; Lin, C. Effects of Heavy Metals on Organic Matter Decomposition in Inundated Soils: Microcosm Experiment and Field Examination. Sci. Total Environ. 2020, 724, 138223. [Google Scholar] [CrossRef]
- Stefanowicz, A.M.; Kapusta, P.; Zubek, S.; Stanek, M.; Woch, M.W. Soil Organic Matter Prevails over Heavy Metal Pollution and Vegetation as a Factor Shaping Soil Microbial Communities at Historical Zn–Pb Mining Sites. Chemosphere 2020, 240, 124922. [Google Scholar] [CrossRef]
- Li, R.; Tan, W.; Wang, G.; Zhao, X.; Dang, Q.; Yu, H.; Xi, B. Nitrogen Addition Promotes the Transformation of Heavy Metal Speciation from Bioavailable to Organic Bound by Increasing the Turnover Time of Organic Matter: An Analysis on Soil Aggregate Level. Environ. Pollut. 2019, 255, 113170. [Google Scholar] [CrossRef]
- Ruehlmann, J.; Bönecke, E.; Meyer, S. Predicting the Lime Demand of Arable Soils from pH Value, Soil Texture and Soil Organic Matter Content. Agronomy 2021, 11, 785. [Google Scholar] [CrossRef]
- Yan, D.; Li, J.; Hu, M.; Lang, Y. Characteristics and Genesis of Supergene Manganese Ores in Xialei, Guangxi. Geol. Sci. Technol. Inf. 2006, 25, 61–67. [Google Scholar]
- Tang, J. Enrichment Characteristics and Poison Research to Crops of Heavy Metals in Fe-Mn Nodules Soil in Karst Area of Guangxi Central. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2011. [Google Scholar]
- Wang, K.; Xu, S.; Yang, Y.; Lin, Q. Study on Zn and Cd Colloid-affected Adsorption in Three Different Soils. Soils 2011, 43, 239–246. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Q.; Li, H.; Wang, X.; Wang, T.; Wang, Y. Study of Cu and Zn adsorption on the clay and its main components in surficial sediments. J. North China Electr. Power Univ. 2009, 36, 89–93. [Google Scholar]
- Qiu, Z.; Ma, W.; Zhang, M. Formation Characteristics of Soils Developed from Metamorphic Rocks in the Hilly and Mountain Areas of Southwest Zhejiang Province. Chin. J. Soil Sci. 2020, 51, 1009–1015. [Google Scholar] [CrossRef]
- Rose, T.; Kretzschmar, T.; Liu, L.; Lancaster, G.; Wissuwa, M. Phosphorus Deficiency Alters Nutrient Accumulation Patterns and Grain Nutritional Quality in Rice. Agronomy 2016, 6, 52. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, D.; Liu, Y.; Chen, X.; Zou, C. Overuse of Phosphorus Fertilizer Reduces the Grain and Flour Protein Contents and Zinc Bioavailability of Winter Wheat (Triticum aestivum L.). J. Agric. Food Chem. 2017, 65, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Wu, L.; Søren, K.R.; Zhou, L.; Pan, G.; Cheng, F. Influence of phosphorus on rice (Oryza sativa L.) grain zinc bioavailability and its relation to inositol phosphate profiles concentration. Acta Agron. Sin. 2020, 46, 228–237. [Google Scholar] [CrossRef]
Samples | Item | Method | Detecting Limit |
---|---|---|---|
Soil | SiO2 | X-ray Fluorescent Spectroscopy (XRF) | 0.05 * |
TFe2O3 | 0.02 * | ||
Al2O3 | 0.03 * | ||
CaO | 0.02 * | ||
Mn | 10 | ||
P | 10 | ||
S | 50 | ||
Zn | 4 | ||
TOC | Volumetric method (VOL) | 0.1 * | |
pH | Ion-selective electrode (ISE) | 0.08 ** | |
Rice | Zn | Inductively coupled plasma mass spectrometry (ICP-MS) | 0.05 |
Sample Distribution Area | Sample Size | Type | Min Value (mg/kg) | Max Value (mg/kg) | Mean Value (mg/kg) | Median Value (mg/kg) | Coefficient of Variation |
---|---|---|---|---|---|---|---|
Heyuan Region | 65 | Root Soil | 32.00 | 156.70 | 72.30 | 68.40 | 0.32 |
Rice Grains | 13.60 | 25.40 | 18.47 | 18.40 | 0.15 | ||
BAFZn | 0.10 | 0.67 | 0.28 | 0.25 | 0.35 | ||
Pearl River Delta | 306 | Root Soil | 16.90 | 253.30 | 79.78 | 71.32 | 0.49 |
Rice Grains | 11.33 | 30.37 | 18.10 | 17.73 | 0.16 | ||
BAFZn | 0.06 | 1.19 | 0.31 | 0.26 | 0.64 |
Model | Validation Sample Size | R2 | NME | MRE (%) | RMSE |
---|---|---|---|---|---|
Artificial Neural Network | 75 | 0.88 | 0.01 | 11.02 | 0.06 |
Random Forest | 77 | 0.85 | 0.01 | 15.09 | 0.07 |
Model | Validation Sample Size | R2 | NME | MRE (%) | RMSE |
---|---|---|---|---|---|
Artificial Neural Network | 65 | 0.58 | 0.02 | 11.93 | 0.07 |
Random Forest | 65 | 0.79 | 0.04 | 8.28 | 0.05 |
Region | Model | Validation Sample Size | R2 | NME | MRE (%) | RMSE |
---|---|---|---|---|---|---|
Heyuan | Artificial Neural Network | 13 | 0.34 | −0.03 | 18.47 | 0.13 |
Random Forest | 13 | 0.55 | −0.07 | 16.30 | 0.11 | |
Pearl River Delta | Artificial Neural Network | 63 | 0.84 | −0.003 | 15.09 | 0.07 |
Random Forest | 64 | 0.86 | 0.003 | 13.25 | 0.07 |
Model | Validation Sample Size | R2 | NME | MRE (%) | RMSE |
---|---|---|---|---|---|
Artificial Neural Network | 65 | 0.80 | 0.02 | 13.18 | 0.08 |
Random Forest | 65 | 0.90 | −0.003 | 9.50 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, W.; Li, T.; Zhu, X.; Dou, L.; Liu, Z.; Qian, K.; Ye, G.; Lin, K.; Li, B.; Ma, X.; et al. Predicting the Zinc Content in Rice from Farmland Using Machine Learning Models: Insights from Universal Geochemical Parameters. Appl. Sci. 2025, 15, 1273. https://doi.org/10.3390/app15031273
Geng W, Li T, Zhu X, Dou L, Liu Z, Qian K, Ye G, Lin K, Li B, Ma X, et al. Predicting the Zinc Content in Rice from Farmland Using Machine Learning Models: Insights from Universal Geochemical Parameters. Applied Sciences. 2025; 15(3):1273. https://doi.org/10.3390/app15031273
Chicago/Turabian StyleGeng, Wenda, Tingting Li, Xin Zhu, Lei Dou, Zijia Liu, Kun Qian, Guiqi Ye, Kun Lin, Bo Li, Xudong Ma, and et al. 2025. "Predicting the Zinc Content in Rice from Farmland Using Machine Learning Models: Insights from Universal Geochemical Parameters" Applied Sciences 15, no. 3: 1273. https://doi.org/10.3390/app15031273
APA StyleGeng, W., Li, T., Zhu, X., Dou, L., Liu, Z., Qian, K., Ye, G., Lin, K., Li, B., Ma, X., Hou, Q., Yu, T., & Yang, Z. (2025). Predicting the Zinc Content in Rice from Farmland Using Machine Learning Models: Insights from Universal Geochemical Parameters. Applied Sciences, 15(3), 1273. https://doi.org/10.3390/app15031273