Combination of Phase Change Composite Material and Liquid-Cooled Plate Prevents Thermal Runaway Propagation of High-Specific-Energy Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study on TR Temperature Characteristics of Cells
2.2. Study on TR Temperature Characteristics of Battery Modules
2.3. TR Propagation Barrier Method with Only Insulation Layer Added
2.4. Heat Absorption–Conduction–Insulation TR Sequential Protection Method
3. Results
3.1. TR Heat Production Process and Model Verification of Battery Cells
3.2. TR Propagation Process and Model Verification of Battery Modules
3.3. TR Propagation Barrier with Only Insulation Layer Added
3.4. PCM and Liquid-Cooled Plate Block TR Propagation
4. Conclusions
- (1)
- The TR behavior of the cells was studied, and the TR heat production model of the cells was established. A high-precision one-dimensional TR heat generation model of the cells was established; this model reflected the changing trend of parameters such as the TR propagation time and maximum temperature and revealed the TR mechanism of the cells.
- (2)
- An unhindered TR propagation test was carried out, and the TR propagation model of the LIB pack was established. The TR propagation law of the battery module was obtained through the TR propagation test of the unblocked battery module. Based on the heat transfer theory, combined with the total TR heat release measured in the ARC test of the battery unit, the TR propagation model of the battery module was established. The test results verified the accuracy and reliability of the model.
- (3)
- Based on the control variable method, the TR propagation barrier test and the TR propagation test of the nano-ceramic fiber, aerogel, and composite phase change insulation layer were carried out. The results show that the composite phase change material is superior to other materials with only heat insulation function in terms of the maximum temperature and spread time due to its phase change heat absorption ability. However, because the heat cannot be effectively transferred, only adding an insulation layer cannot significantly reduce the maximum TR temperature, and a single heat insulation measure cannot effectively inhibit the thermal spread of the ternary LIB module, as shown in this study.
- (4)
- A TR timing protection method based on thermal insulation with endothermic–thermal conductivity was proposed. To design a three-level TR sequential protection method involving “early heat absorption, middle heat conduction, late heat insulation”, this study used phase change materials in the initial phase of the TR phase change heat absorption; in addition, it used fire retardant materials and a liquid cooling system in the TR process of the rapid conduction of heat characteristics. The method was used to successfully block the 60 Ah terpolymer LIB module TR propagation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Q.; Nie, Y.; Peng, S.; Miao, Y.; Zhai, C.; Zhang, R.; Han, J.; Zhao, S.; Pecht, M. Evaluation of the safety standards system of power batteries for electric vehicles in China. Appl. Energy 2023, 349, 121674. [Google Scholar] [CrossRef]
- Ren, D.; Hsu, H.; Li, R.; Feng, X.; Guo, D.; Han, X.; Lu, L.; He, X.; Gao, S.; Hou, J.; et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries. eTransportation 2019, 2, 100034. [Google Scholar] [CrossRef]
- Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. [Google Scholar] [CrossRef]
- Spotnitz, R.; Franklin, J. Abuse behavior of high-power, lithium-ion cells. J. Power Sources 2003, 113, 81–100. [Google Scholar] [CrossRef]
- Feng, X.; He, X.; Ouyang, M.; Lu, L.; Wu, P.; Kulp, C.; Prasser, S. Thermal runaway propagation model for designing a safer battery pack with 25 Ah LiNi Co Mn O2 large format lithium ion battery. Appl. Energy 2015, 154, 74–91. [Google Scholar] [CrossRef]
- Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Mater. 2018, 10, 246–267. [Google Scholar] [CrossRef]
- Ren, D.; Feng, X.; Liu, L.; Hsu, H.; Lu, L.; Wang, L.; He, X.; Ouyang, M. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Mater. 2021, 34, 563–573. [Google Scholar] [CrossRef]
- Talele, V.; Patil, M.S.; Panchal, S.; Fraser, R.; Fowler, M. Battery thermal runaway propagation time delay strategy using phase change material integrated with pyro block lining: Dual functionality battery thermal design. J. Energy Storage 2023, 65, 107253. [Google Scholar] [CrossRef]
- Niu, J.; Deng, S.; Gao, X.; Niu, H.; Fang, Y.; Zhang, Z. Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation. J. Energy Storage 2022, 47, 103557. [Google Scholar] [CrossRef]
- Weng, J.; Ouyang, D.; Yang, X.; Chen, M.; Zhang, G.; Wang, J. Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material. Energy Convers. Manag. 2019, 200, 112071. [Google Scholar] [CrossRef]
- Wilke, S.; Schweitzer, B.; Khateeb, S.; Al-Hallaj, S. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study. J. Power Sources 2017, 340, 51–59. [Google Scholar] [CrossRef]
- Becher, D.; Bauer, M.; Döring, H.; Böse, O.; Friess, B.; Danzer, M.A. Preventing thermal propagation in battery packs using enthalpy supported thermal barriers. J. Energy Storage 2021, 42, 103057. [Google Scholar] [CrossRef]
- Li, L.; Jia, C.; Liu, Y.; Fang, B.; Zhu, W.; Li, X.; Schaefer, L.; Li, Z.; Zhang, F.; Feng, X.; et al. Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater. Today 2022, 54, 72–82. [Google Scholar] [CrossRef]
- Li, L.; Xu, C.; Chang, R.; Yang, C.; Jia, C.; Wang, L.; Song, J.; Li, Z.; Zhang, F.; Fang, B.; et al. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Mater. 2021, 40, 329–336. [Google Scholar] [CrossRef]
- Li, L.; Fang, B.; Ren, D.; Fu, L.; Zhou, Y.; Yang, C.; Zhang, F.; Feng, X.; Wang, L.; He, X.; et al. Thermal-Switchable, Trifunctional Ceramic–Hydrogel Nanocomposites Enable Full-Lifecycle Security in Practical Battery Systems. ACS Nano 2022, 16, 10729–10741. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ouyang, D.; Qian, X.; Yuan, S.; Chang, C.; Zhang, J.; Liu, Y. Early Warning Method and Fire Extinguishing Technology of Lithium-Ion Battery Thermal Runaway: A Review. Energies 2023, 16, 2960. [Google Scholar] [CrossRef]
- Lv, Y.; Geng, X.; Luo, W.; Chu, T.; Li, H.; Liu, D.; Cheng, H.; Chen, J.; He, X.; Li, C. Review on influence factors and prevention control technologies of lithium-ion battery energy storage safety. J. Energy Storage 2023, 72, 108389. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Zhou, Z.; Zhu, Y.; Du, K.; Zhou, X. A novel dry powder extinguishant with high cooling performance for suppressing lithium ion battery fires. Case Stud. Therm. Eng. 2023, 42, 102756. [Google Scholar] [CrossRef]
- Liu, T.; Tao, C.; Wang, X. Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules. Appl. Energy 2020, 267, 115087. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, P.; Duan, Q.; Zhao, C.; Wang, Q. Experimental investigation on the cooling and suppression effects of liquid nitrogen on the thermal runaway of lithium ion battery. J. Power Sources 2021, 495, 229795. [Google Scholar] [CrossRef]
- Yuan, S.; Chang, C.; Yan, S.; Zhou, P.; Qian, X.; Yuan, M.; Liu, K. A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J. Energy Chem. 2021, 62, 262–280. [Google Scholar] [CrossRef]
- Xu, J.; Guo, P.; Duan, Q.; Yu, X.; Zhang, L.; Liu, Y.; Wang, Q. Experimental study of the effectiveness of three kinds of extinguishing agents on suppressing lithium-ion battery fires. Appl. Therm. Eng. 2020, 171, 115076. [Google Scholar] [CrossRef]
- Meng, X.; Jiang, L.; Duan, Q.; Wang, S.; Duan, P.; Wei, Z.; Zhang, L.; Jia, Z.; Jin, K.; Wang, Q. Experimental study on exploration of optimum extinguishing agent for 243 Ah lithium iron phosphate battery fires. Process. Saf. Environ. Prot. 2023, 177, 138–151. [Google Scholar] [CrossRef]
- GB 38031-2020; Electric Vehicles Traction Battery Safety Requirements. State Administration for Market Regulation, Standardization Administration of the People’s Republic of China: Beijing, China, 2020.
- COMSOL Multiphysics® v. 6.3. COMSOL AB, Stockholm, Sweden. Available online: https://www.comsol.com/ (accessed on 20 December 2024).
- Wang, Y.; Kalinina, A.; Sun, T.; Nowack, B. Probabilistic modeling of the flows and environmental risks of nano-silica. Sci. Total. Environ. 2016, 545–546, 67–76. [Google Scholar] [CrossRef]
- Sakharova, A.; Kozlov, I.; Baydarashvili, M.; Petriaev, A. Reduction of negative impact on the geoenvironment using silica sol in road construction. MATEC Web Conf. 2019, 265, 06002. [Google Scholar] [CrossRef]
Serial Number | Items | Specifications |
---|---|---|
1 | Rated capacity | 60 Ah @1 C, 25 °C |
2 | Nominal voltage | 3.66 V @1 C, 25 °C |
3 | Standard charging | 0.33 C CC-CV to 4.3 V, cutoff 0.05 C |
4 | Standard discharge | 0.33 C CC to 2.8 V |
5 | Charge cut-off voltage | 4.3 V |
6 | Discharge cut-off voltage | 2.8 V |
7 | Single battery weight | 830 ± 15 g |
8 | Energy density | ≥270 Wh kg−1, ≥570 Wh L−1 |
9 | Dimensions | 313 mm × 101 mm × 12 mm |
Material (180 °C Exothermic Peak) | Ax/(s−1) | mx/g | ΔHx/(J·g−1) | cx,0 | |
---|---|---|---|---|---|
SEI membrane | 1.61 × 1015 | 182 | 245 | 0.14 | |
Negative pole | 0.003 (T < 150 °C) | 180 | 1805 | 1.00 | |
2.5 × 1014 (T ≥ 150 °C) | |||||
Separator | 1.5 × 1040 | 20 | −213 | 1.00 | |
Electrolyte | 3 × 1015 | 137 | 680 | 1.00 | |
Positive electrode | 1.75 × 109 | 285 | 75 | 0.99 | |
1.077 × 1012 | 285 | 88 | 0.99 | ||
Material (220 °C exothermic peak) | Ea,x/(J·mol−1) | N | m | f (x) | T0/°C |
SEI film | 1.3 × 1015 | 1 | 0 | 1 | 80 |
Negative electrode | 2.3 × 104 | 1 | 0 | 1 | 80 |
Separator | 4.22 × 105 | 1 | 0 | 1 | 130 |
Electrolyte | 1.65 × 105 | 1 | 0 | 1 | 130 |
Positive electrode | 1.15 × 105 | 1 | 1 | 1 | 140 |
1.6 × 105 | 1 | 1 | 1 | 161 |
Mode | Description | (mm) | λ (W·m−1·K−1) | h (W·m−2·K−1) | |
---|---|---|---|---|---|
Heat conduction | Heater—Battery thermal resistance layer | 0.01 | 0.023 | / | / |
Shell—Core thermal resistance layer | 0.01 | 0.023 | / | / | |
Outer shell—Outer shell thermal resistance layer | 0.10 | 0.010 | / | / | |
Shell—Polar bear thermal barrier layer | 0.01 | 0.023 | / | / | |
Heat convection | Surface radiant heat transfer | / | / | 20 | / |
Heat radiation | Surface convection heat transfer | / | / | / | 0.04 |
T1 (Temperature of Initiation of Autogenic Heat) | T2 (TR Trigger Temperature) | T3 (TR Maximum Temperature) |
---|---|---|
84 °C | 147 °C | 660 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Dang, Y.; Yu, Y.; Zhou, X.; Li, L. Combination of Phase Change Composite Material and Liquid-Cooled Plate Prevents Thermal Runaway Propagation of High-Specific-Energy Battery. Appl. Sci. 2025, 15, 1274. https://doi.org/10.3390/app15031274
Ji W, Dang Y, Yu Y, Zhou X, Li L. Combination of Phase Change Composite Material and Liquid-Cooled Plate Prevents Thermal Runaway Propagation of High-Specific-Energy Battery. Applied Sciences. 2025; 15(3):1274. https://doi.org/10.3390/app15031274
Chicago/Turabian StyleJi, Weigao, Yongchun Dang, Yongchao Yu, Xunli Zhou, and Lei Li. 2025. "Combination of Phase Change Composite Material and Liquid-Cooled Plate Prevents Thermal Runaway Propagation of High-Specific-Energy Battery" Applied Sciences 15, no. 3: 1274. https://doi.org/10.3390/app15031274
APA StyleJi, W., Dang, Y., Yu, Y., Zhou, X., & Li, L. (2025). Combination of Phase Change Composite Material and Liquid-Cooled Plate Prevents Thermal Runaway Propagation of High-Specific-Energy Battery. Applied Sciences, 15(3), 1274. https://doi.org/10.3390/app15031274