Can Foot Orthoses Prevent Falls? A Proposal for a New Evaluation Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants Selection
2.2. Study Design
- Sway area [mm2/s]: it represents the area covered by the movement of the center of pressure (COP) while maintaining an upright position;
- Sway pathAP [mm/s]: it represents the trajectory length of the center of pressure (COP) movements along the anteroposterior direction during the postural stability test;
- Sway pathML [mm/s]: it represents the trajectory length of the center of pressure (COP) movements along the mediolateral direction during the postural stability test.
2.3. Data Analysis
3. Results
3.1. Overall Population Analysis
3.2. BMI Analysis
3.2.1. Sway Area
3.2.2. Sway PathAP
3.2.3. Sway PathML
3.3. Age Analysis
3.3.1. Sway Area
3.3.2. Sway PathAP
3.3.3. Sway PathML
3.4. Male vs. Female Analysis
3.4.1. Sway Area
3.4.2. Sway PathAP
3.4.3. Sway PathML
4. Discussion
Limitations and Future Directions
- The number of patients recruited is limited, and the number of patients for groups compared is unequal.
- The short-term follow-up: The length of the follow-up period can be increased to three or six months in future studies.
- The BMI comparison can be influenced by the body fat and muscle percentages. Therefore, the comparison based on the body fat and muscle percentages in future studies can improve the results obtained.
- The physical (bone density and muscle and fat masses) and hormonal level differences between males and females were not taken into account during this preliminary study.
- More detailed classification of different ages can be achieved after recruiting a larger number of patients.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Global Report on Falls Prevention in Older Age; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35, ii37–ii41. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, S.; Rapp, K.; Rissmann, U.; Becker, C.; König, H.-H. Cost of falls in old age: A systematic review. Osteoporos. Int. 2010, 21, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Gambaro, E.; Gramaglia, C.; Azzolina, D.; Campani, D.; Molin, A.D.; Zeppegno, P. The complex associations between late life depression, fear of falling and risk of falls. A systematic review and meta-analysis. Ageing Res. Rev. 2022, 73, 101532. [Google Scholar] [CrossRef]
- Howcroft, J.; Lemaire, E.D.; Kofman, J. Wearable-Sensor-Based Classification Models of Faller Status in Older Adults. PLoS ONE 2016, 11, e0153240. [Google Scholar] [CrossRef]
- Erbaş, D.H.; Çınar, F.; Aslan, F.E. Elderly patients and falls: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2021, 33, 2953–2966. [Google Scholar] [CrossRef]
- Guidozzi, F. Foot problems in older women. Climacteric 2017, 20, 518–521. [Google Scholar] [CrossRef]
- Brognara, L.; Mazzotti, A.; Arceri, A.; Artioli, E.; Casadei, G.; Bonelli, S.; Traina, F.; Faldini, C. Patient Reported Outcome Measures (PROMs) in Surgery: Evaluation after Minimally Invasive Reduction and Percutaneous K-Wires Fixation for Intra-Articular Calcaneal Fractures. Diseases 2023, 11, 57. [Google Scholar] [CrossRef]
- Le Floch, M.; Ali, P.; Asfar, M.; Sánchez-Rodríguez, D.; Dinomais, M.; Annweiler, C. Volumetric Brain Changes in Older Fallers: A Voxel-Based Morphometric Study. Front. Bioeng. Biotechnol. 2021, 9, 610426. [Google Scholar] [CrossRef]
- Pijpers, E.; Ferreira, I.; de Jongh, R.T.; Deeg, D.J.; Lips, P.; Stehouwer, C.D.A.; Kruseman, A.C.N. Older individuals with diabetes have an increased risk of recurrent falls: Analysis of potential mediating factors: The Longitudinal Ageing Study Amsterdam. Age Ageing 2011, 41, 358–365. [Google Scholar] [CrossRef]
- Verghese, J.; Holtzer, R.; Lipton, R.B.; Wang, C. Quantitative Gait Markers and Incident Fall Risk in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64A, 896–901. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Quan, W.; Ma, X.; Chon, T.-E.; Fernandez, J.; Gusztav, F.; Kovács, A.; Baker, J.S.; Gu, Y. New Insights Optimize Landing Strategies to Reduce Lower Limb Injury Risk. Cyborg Bionic Syst. 2024, 5, 0126. [Google Scholar] [CrossRef] [PubMed]
- Menz, H.B.; Auhl, M.; Spink, M.J. Foot problems as a risk factor for falls in community-dwelling older people: A systematic review and meta-analysis. Maturitas 2018, 118, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Muro-de-la-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Bai, J.-J. Balance training in the intervention of fall risk in elderly with diabetic peripheral neuropathy: A review. Int. J. Nurs. Sci. 2014, 1, 441–445. [Google Scholar] [CrossRef]
- Kiprijanovska, I.; Gjoreski, H.; Gams, M. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning. Sensors 2020, 20, 5373. [Google Scholar] [CrossRef]
- Vera-Remartínez, E.J.; Lázaro-Monge, R.; Casado-Hoces, S.V.; Garcés-Pina, E.; Molés-Julio, M.P. Validity and reliability of an android device for the assessment of fall risk in older adult inmates. Nurs. Open 2023, 10, 2904–2911. [Google Scholar] [CrossRef]
- Lord, S.R.; Ward, J.A.; Williams, P.; Anstey, K.J. Physiological Factors Associated with Falls in Older Community-Dwelling Women. J. Am. Geriatr. Soc. 1994, 42, 1110–1117. [Google Scholar] [CrossRef]
- Kocuvan, P.; Hrastič, A.; Kareska, A.; Gams, M. Predicting a Fall Based on Gait Anomaly Detection: A Comparative Study of Wrist-Worn Three-Axis and Mobile Phone-Based Accelerometer Sensors. Sensors 2023, 23, 8294. [Google Scholar] [CrossRef]
- Arias-Martín, I.; Reina-Bueno, M.; Munuera-Martínez, P.V. Effectiveness of custom-made foot orthoses for treating forefoot pain: A systematic review. Int. Orthop. 2018, 42, 1865–1875. [Google Scholar] [CrossRef]
- Iglesias, M.E.L.; Vallejo, R.B.d.B.; Peña, D.P. Impact of Soft and Hard Insole Density on Postural Stability in Older Adults. Geriatr. Nurs. 2012, 33, 264–271. [Google Scholar] [CrossRef]
- Petraglia, F.; Scarcella, L.; Pedrazzi, G.; Brancato, L.; Puers, R.; Costantino, C. Inertial sensors versus standard systems in gait analysis: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2019, 55, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Mulas, I.; Putzu, V.; Asoni, G.; Viale, D.; Mameli, I.; Pau, M. Clinical assessment of gait and functional mobility in Italian healthy and cognitively impaired older persons using wearable inertial sensors. Aging Clin. Exp. Res. 2020, 33, 1853–1864. [Google Scholar] [CrossRef] [PubMed]
- Vienne-Jumeau, A.; Quijoux, F.; Vidal, P.-P.; Ricard, D. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2020, 63, 138–147. [Google Scholar] [CrossRef]
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef]
- Beyea, J.; McGibbon, C.A.; Sexton, A.; Noble, J.; O’connell, C. Convergent Validity of a Wearable Sensor System for Measuring Sub-Task Performance during the Timed Up-and-Go Test. Sensors 2017, 17, 934. [Google Scholar] [CrossRef]
- Szeto, K.; Arnold, J.; Singh, B.; Gower, B.; Simpson, C.E.M.; Maher, C. Interventions Using Wearable Activity Trackers to Improve Patient Physical Activity and Other Outcomes in Adults Who Are Hospitalized. JAMA Netw. Open 2023, 6, e2318478. [Google Scholar] [CrossRef]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait analysis using wearable sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef]
- Halim, A.; Abdellatif, A.; I Awad, M.; A Atia, M.R. Prediction of human gait activities using wearable sensors. Proc. Inst. Mech. Eng. H 2021, 235, 676–687. [Google Scholar] [CrossRef]
- Prasanth, H.; Caban, M.; Keller, U.; Courtine, G.; Ijspeert, A.; Vallery, H.; von Zitzewitz, J. Wearable sensor-based real-time gait detection: A systematic review. Sensors 2021, 21, 2727. [Google Scholar] [CrossRef]
- Follis, S.; Chen, Z.; Mishra, S.; Howe, C.L.; Toosizadeh, N.; Dohm, M. Comparison of wearable sensor to traditional methods in functional outcome measures: A systematic review. J. Orthop. Res. 2020, 39, 2093–2102. [Google Scholar] [CrossRef]
- Kobsar, D.; Charlton, J.M.; Tse, C.T.F.; Esculier, J.-F.; Graffos, A.; Krowchuk, N.M.; Thatcher, D.; Hunt, M.A. Validity and reliability of wearable inertial sensors in healthy adult walking: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2020, 17, 62. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.E.; Yang, J.; Najafi, B. Does the presence of cognitive impairment exacerbate the risk of falls in people with peripheral neuropathy? An application of body-worn inertial sensors to measure gait variability. Sensors 2020, 20, 1328. [Google Scholar] [CrossRef] [PubMed]
- Rast, F.M.; Labruyère, R. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments. J. Neuroeng. Rehabil. 2020, 17, 148. [Google Scholar] [CrossRef] [PubMed]
- Brognara, L.; Mazzotti, A.; Di Martino, A.; Faldini, C.; Cauli, O. Wearable Sensor for Assessing Gait and Postural Alterations in Patients with Diabetes: A Scoping Review. Medicina 2021, 57, 1145. [Google Scholar] [CrossRef]
- Brognara, L.; Mazzotti, A.; Zielli, S.O.; Arceri, A.; Artioli, E.; Traina, F.; Faldini, C. Wearable Technology Applications and Methods to Assess Clinical Outcomes in Foot and Ankle Disorders: Achievements and Perspectives. Sensors 2024, 24, 7059. [Google Scholar] [CrossRef]
- Brognara, L.; Sempere-Bigorra, M.; Mazzotti, A.; Artioli, E.; Julián-Rochina, I.; Cauli, O. Wearable sensors-based postural analysis and fall risk assessment among patients with diabetic foot neuropathy. J. Tissue Viability 2023, 32, 516–526. [Google Scholar] [CrossRef]
- Hansson, E.E.; Tornberg, Å. Coherence and reliability of a wearable inertial measurement unit for measuring postural sway. BMC Res. Notes 2019, 12, 201. [Google Scholar] [CrossRef]
- Silva-Batista, C.; Wilhelm, J.L.; Scanlan, K.T.; Stojak, M.; Carlson-Kuhta, P.; Chen, S.; Liu, W.; de la Huerta, T.N.G.; Horak, F.B.; Mancini, M.; et al. Balance telerehabilitation and wearable technology for people with Parkinson’s disease (TelePD trial). BMC Neurol. 2023, 23, 368. [Google Scholar] [CrossRef]
- Rashid, U.; Barbado, D.; Olsen, S.; Alder, G.; Elvira, J.L.L.; Lord, S.; Niazi, I.K.; Taylor, D. Validity and Reliability of a Smartphone App for Gait and Balance Assessment. Sensors 2021, 22, 124. [Google Scholar] [CrossRef]
- Grewal, G.S.; Sayeed, R.; Schwenk, M.; Bharara, M.; Menzies, R.; Talal, T.K.; Armstrong, D.G.; Najafi, B. Balance Rehabilitation: Promoting the role of virtual reality in patients with diabetic peripheral neuropathy. J. Am. Podiatr. Med. Assoc. 2013, 103, 498–507. [Google Scholar] [CrossRef]
- Mazzotti, A.; Arceri, A.; Abdi, P.; Artioli, E.; Zielli, S.O.; Langone, L.; Ramponi, L.; Ridolfi, A.; Faldini, C.; Brognara, L. An Innovative Clinical Evaluation Protocol after Total Ankle Arthroplasty: A Pilot Study Using Inertial Sensors and Baropodometric Platforms. Appl. Sci. 2024, 14, 1964. [Google Scholar] [CrossRef]
- Brognara, L.; Mazzotti, A.; Rossi, F.; Lamia, F.; Artioli, E.; Faldini, C.; Traina, F. Using Wearable Inertial Sensors to Monitor Effectiveness of Different Types of Customized Orthoses during CrossFit® Training. Sensors 2023, 23, 1636. [Google Scholar] [CrossRef] [PubMed]
- Brognara, L.; Mafla-España, M.A.; Gil-Molina, I.; Castillo-Verdejo, Y.; Cauli, O. The Effects of 3D Custom Foot Orthotics with Mechanical Plantar Stimulation in Older Individuals with Cognitive Impairment: A Pilot Study. Brain Sci. 2022, 12, 1669. [Google Scholar] [CrossRef]
- Baker, N.; Gough, C.; Gordon, S.J. Inertial Sensor Reliability and Validity for Static and Dynamic Balance in Healthy Adults: A Systematic Review. Sensors 2021, 21, 5167. [Google Scholar] [CrossRef]
- Brognara, L.; Navarro-Flores, E.; Iachemet, L.; Serra-Catalá, N.; Cauli, O. Beneficial effect of foot plantar stimulation in gait parameters in individuals with parkinson’s disease. Brain Sci. 2020, 10, 69. [Google Scholar] [CrossRef]
- Brognara, L.; Fantini, M.; Morellato, K.; Graziani, G.; Baldini, N.; Cauli, O. Foot Orthosis and Sensorized House Slipper by 3D Printing. Materials 2022, 15, 4064. [Google Scholar] [CrossRef]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut Off Points; StatPearls: Tampa, FL, USA, 2024. [Google Scholar]
- Awale, A.; Hagedorn, T.J.; Dufour, A.B.; Menz, H.B.; Casey, V.A.; Hannan, M.T. Foot Function, Foot Pain, and Falls in Older Adults: The Framingham Foot Study. Gerontology 2017, 63, 318–324. [Google Scholar] [CrossRef]
- Chaiwanichsiri, D.; Janchai, S.; Tantisiriwat, N. Foot Disorders and Falls in Older Persons. Gerontology 2008, 55, 296–302. [Google Scholar] [CrossRef]
- Muchna, A.; Najafi, B.; Wendel, C.S.; Schwenk, M.; Armstrong, D.G.; Mohler, J. Foot Problems in Older Adults. J. Am. Podiatr. Med. Assoc. 2018, 108, 126–139. [Google Scholar] [CrossRef]
- Mickle, K.J.; Munro, B.J.; Lord, S.R.; Menz, H.B.; Steele, J.R. Foot Pain, Plantar Pressures, and Falls in Older People: A Prospective Study. J. Am. Geriatr. Soc. 2010, 58, 1936–1940. [Google Scholar] [CrossRef]
- Jiménez-Cebrián, A.M.; Ruiz-Sánchez, F.J.; Losa-Iglesias, M.E.; Becerro-De-Bengoa-Vallejo, R.; López-López, D.; Montiel-Luque, A.; de Labra, C.; Saavedra-García, M.Á.; Navarro-Flores, E. Relationship of foot pain with the increased risk of falls in patients with Parkinson’s disease. J. Foot Ankle Res. 2024, 17, e70023. [Google Scholar] [CrossRef]
- Brognara, L. Gait Assessment Using Smartphone Applications in Older Adults: A Scoping Review. Geriatrics 2024, 9, 95. [Google Scholar] [CrossRef]
- Brognara, L.; Cauli, O. Mechanical Plantar Foot Stimulation in Parkinson′s Disease: A Scoping Review. Diseases 2020, 8, 12. [Google Scholar] [CrossRef]
- Casadei, G.; Filippini, M.; Brognara, L. Glycated Hemoglobin (HbA1c) as a Biomarker for Diabetic Foot Peripheral Neuropathy. Diseases 2021, 9, 16. [Google Scholar] [CrossRef]
- Sempere-Bigorra, M.; Brognara, L.; Julian-Rochina, I.; Mazzotti, A.; Cauli, O. Relationship between deep and superficial sensitivity assessments and gait analysis in diabetic foot patients. Int. Wound J. 2023, 20, 3023–3034. [Google Scholar] [CrossRef]
- Brognara, L.; Volta, I.; Cassano, V.M.; Navarro-Flores, E.; Cauli, O. The Association between Cognitive Impairment and Diabetic Foot Care: Role of Neuropathy and Glycated Hemoglobin. Pathophysiology 2020, 27, 14–27. [Google Scholar] [CrossRef]
- Štefan, L.; Kasović, M.; Zvonar, M. Gait Speed as a Screening Tool for Foot Pain and the Risk of Falls in Community-Dwelling Older Women: A Cross-Sectional Study. Clin. Interv. Aging 2020, 15, 1569–1574. [Google Scholar] [CrossRef]
- Wylie, G.; Torrens, C.; Campbell, P.; Frost, H.; Gordon, A.L.; Menz, H.B.; Skelton, D.A.; Sullivan, F.; Witham, M.D.; Morris, J. Podiatry interventions to prevent falls in older people: A systematic review and meta-analysis. Age Ageing 2019, 48, 327–336. [Google Scholar] [CrossRef]
- Spink, M.J.; Menz, H.B.; Fotoohabadi, M.R.; Wee, E.; Landorf, K.B.; Hill, K.D.; Lord, S.R. Effectiveness of a multifaceted podiatry intervention to prevent falls in community dwelling older people with disabling foot pain: Randomised controlled trial. BMJ 2011, 342, d3411. [Google Scholar] [CrossRef]
- Kurz, I.; Oddsson, L.; Melzer, I. Characteristics of balance control in older persons who fall with injury—A prospective study. J. Electromyogr. Kinesiol. 2013, 23, 814–819. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Löfler, S.; Hofer, C.; Carraro, U.; Šarabon, N. Diagnostic Balance Tests for Assessing Risk of Falls and Distinguishing Older Adult Fallers and Non-Fallers: A Systematic Review with Meta-Analysis. Diagnostics 2020, 10, 667. [Google Scholar] [CrossRef]
- Šarabon, N.; Kozinc, Ž.; Marković, G. Effects of age, sex and task on postural sway during quiet stance. Gait Posture 2022, 92, 60–64. [Google Scholar] [CrossRef]
- Menegoni, F.; Galli, M.; Tacchini, E.; Vismara, L.; Cavigioli, M.; Capodaglio, P. Gender-specific Effect of Obesity on Balance. Obesity 2009, 17, 1951–1956. [Google Scholar] [CrossRef]
- Rezaeipour, M.; Apanasenko, G.L. Effects of Overweight and Obesity on Postural Stability of Aging Females. Middle East J. Rehabil. Health 2018, in press. [Google Scholar] [CrossRef]
- Ku, P.; Abu Osman, N.; Yusof, A.; Abas, W.W. Biomechanical evaluation of the relationship between postural control and body mass index. J. Biomech. 2012, 45, 1638–1642. [Google Scholar] [CrossRef]
- Dutil, M.; Handrigan, G.A.; Corbeil, P.; Cantin, V.; Simoneau, M.; Teasdale, N.; Hue, O. The impact of obesity on balance control in community-dwelling older women. Age 2012, 35, 883–890. [Google Scholar] [CrossRef]
- Hue, O.; Simoneau, M.; Marcotte, J.; Berrigan, F.; Doré, J.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Body weight is a strong predictor of postural stability. Gait Posture 2007, 26, 32–38. [Google Scholar] [CrossRef]
- Yümin, E.T.; Şimşek, T.T.; Sertel, M.; Ankaralı, H. The effect of age and body mass index on plantar cutaneous sensation in healthy women. J. Phys. Ther. Sci. 2016, 28, 2587–2595. [Google Scholar] [CrossRef]
- Wu, X.; Madigan, M.L. Impaired plantar sensitivity among the obese is associated with increased postural sway. Neurosci. Lett. 2014, 583, 49–54. [Google Scholar] [CrossRef]
- Zhang, S.; Li, L. The differential effects of foot sole sensory on plantar pressure distribution between balance and gait. Gait Posture 2012, 37, 532–535. [Google Scholar] [CrossRef]
- Mileti, I.; Taborri, J.; Rossi, S.; Del Prete, Z.; Paoloni, M.; Suppa, A.; Palermo, E. Measuring age-related differences in kinematic postural strategies under yaw perturbation. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar] [CrossRef]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- Roman-Liu, D. Age-related changes in the range and velocity of postural sway. Arch. Gerontol. Geriatr. 2018, 77, 68–80. [Google Scholar] [CrossRef]
- Kim, J.-K.; Bae, M.-N.; Lee, K.B.; Hong, S.G. Identification of patients with sarcopenia using gait parameters based on inertial sensors. Sensors 2021, 21, 1786. [Google Scholar] [CrossRef]
- Kim, M.; Won, C.W. Sarcopenia Is Associated with Cognitive Impairment Mainly Due to Slow Gait Speed: Results from the Korean Frailty and Aging Cohort Study (KFACS). Int. J. Environ. Res. Public Health 2019, 16, 1491. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Murray, K.J.; Hill, K.; Phillips, B.; Waterston, J. A pilot study of falls risk and vestibular dysfunction in older fallers presenting to hospital Emergency Departments. Disabil. Rehabil. 2005, 27, 499–506. [Google Scholar] [CrossRef]
- Cenciarini, M.; Loughlin, P.J.; Sparto, P.J.; Redfern, M.S. Stiffness and Damping in Postural Control Increase With Age. IEEE Trans. Biomed. Eng. 2009, 57, 267–275. [Google Scholar] [CrossRef]
- Iwasaki, S.; Yamasoba, T. Dizziness and Imbalance in the Elderly: Age-related Decline in the Vestibular System. Aging Dis. 2015, 6, 38–47. [Google Scholar] [CrossRef]
- Agostini, V.; Sbrollini, A.; Cavallini, C.; Busso, A.; Pignata, G.; Knaflitz, M. The role of central vision in posture: Postural sway adaptations in Stargardt patients. Gait Posture 2015, 43, 233–238. [Google Scholar] [CrossRef]
- Tomomitsu, M.S.; Alonso, A.C.; Morimoto, E.; Bobbio, T.G.; Greve, J.M. Static and dynamic postural control in low-vision and normal-vision adults. Clinics 2013, 68, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Patino, C.M.; McKean-Cowdin, R.; Azen, S.P.; Allison, J.C.; Choudhury, F.; Varma, R. Central and Peripheral Visual Impairment and the Risk of Falls and Falls with Injury. Ophthalmology 2009, 117, 199–206.e1. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.; Moss, S.E.; Klein, R.; Lee, K.E.; Cruickshanks, K.J. Associations of visual function with physical outcomes and limitations 5 years later in an older population. Ophthalmology 2003, 110, 644–650. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Mean ± Dev Std (Min–Max) |
---|---|
Age | 57.66 ± 14.57 (29–82) |
BMI | 26.99 ± 5.62 (18.94–40.43) |
(A) Age | |
<65 years old | 21 |
>65 years old | 14 |
(B) Sex | |
Male | 15 |
Female | 20 |
BMI | |
---|---|
<18.5 (underweight) | 0 |
18.5–24.9 (normal weight) | 13 |
25.0–29.9 (overweight) | 11 |
30.0–34.9 (obese class I) | 9 |
35.0–39.9 (obese class II) | 1 |
>40 (obese class III) | 1 |
Plantar Type | |
---|---|
Biomechanical insole with polypropylene | 6 |
Accommodative insole with resin and retrocapital bar/olive | 11 |
Biomechanical insole with polypropylene and forefoot/rearfoot posting | 11 |
Accommodative insole without retro capital bar/olive | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montesissa, M.; Raimondi, I.; Baldini, N.; Mazzotti, A.; Brognara, L. Can Foot Orthoses Prevent Falls? A Proposal for a New Evaluation Protocol. Appl. Sci. 2025, 15, 1297. https://doi.org/10.3390/app15031297
Montesissa M, Raimondi I, Baldini N, Mazzotti A, Brognara L. Can Foot Orthoses Prevent Falls? A Proposal for a New Evaluation Protocol. Applied Sciences. 2025; 15(3):1297. https://doi.org/10.3390/app15031297
Chicago/Turabian StyleMontesissa, Matteo, Ilaria Raimondi, Nicola Baldini, Antonio Mazzotti, and Lorenzo Brognara. 2025. "Can Foot Orthoses Prevent Falls? A Proposal for a New Evaluation Protocol" Applied Sciences 15, no. 3: 1297. https://doi.org/10.3390/app15031297
APA StyleMontesissa, M., Raimondi, I., Baldini, N., Mazzotti, A., & Brognara, L. (2025). Can Foot Orthoses Prevent Falls? A Proposal for a New Evaluation Protocol. Applied Sciences, 15(3), 1297. https://doi.org/10.3390/app15031297