Proton Exchange Membrane Fuel Cell Stack Durability Prediction Using Arrhenius-Based Accelerated Degradation Model
Abstract
:Featured Application
Abstract
1. Introduction
2. Methodology
2.1. Durability Test Protocol
2.2. Bi-Exponential Model
2.3. Arrhenius-Based Bi-Exponential Model
2.4. NLME Model
3. Results and Discussion
3.1. PEMFC Stack Degradation
3.2. Model Parameters Estimation
3.3. Failure-Time Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meng, X.; Sun, C.; Mei, J.; Tang, X.; Hasanien, H.M.; Jiang, J.; Fan, F.; Song, K. Fuel cell life prediction considering the recovery phenomenon of reversible voltage loss. J. Power Sources 2025, 625, 235634. [Google Scholar] [CrossRef]
- Whiston, M.M.; Azevedo, I.L.; Litster, S.; Whitefoot, K.S.; Samaras, C.; Whitacre, J.F. Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles. Proc. Natl. Acad. Sci. USA 2019, 116, 4899–4904. [Google Scholar] [CrossRef] [PubMed]
- Marcinkoski, J.; Vijayagopal, R.; Adams, J.; James, B.; Kopasz, J.; Ahluwalia, R. DOE advanced truck technologies. In Subsection of the Electrified Powertrain Roadmap Technical Targets for Hydrogen-Fueled Long-Haul Tractor-Trailer Trucks; 2019; pp. 1–31. Available online: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/19006_hydrogen_class8_long_haul_truck_targets.pdf?Status=Master (accessed on 22 January 2025).
- Zhang, S.; Yuan, X.; Wang, H.; Mérida, W.; Zhu, H.; Shen, J.; Wu, S.; Zhang, J. A review of accelerated stress tests of MEA durability in PEM fuel cells. Int. J. Hydrogen Energy 2009, 34, 88–404. [Google Scholar] [CrossRef]
- Ramaswamy, N.; Hakim, N.; Mukerjee, S. Degradation mechanism study of perfluorinated proton exchange membrane under fuel cell operating conditions. Electrochim. Acta 2008, 53, 3279–3295. [Google Scholar] [CrossRef]
- Endoh, E.; Terazono, S.; Widjaja, H.; Takimoto, Y. Degradation study of MEA for PEMFCs under low humidity conditions. Electrochem. Solid-State Lett. 2004, 7, 7. [Google Scholar] [CrossRef]
- Garland, N.; Benjamin, T.; Kopasz, J. DOE Fuel Cell Program: Durability Technical Targets and Testing Protocols. ECS Trans. 2007, 11, 923–931. [Google Scholar] [CrossRef]
- Takahashi, T.; Ikeda, T.; Murata, K.; Hotaka, O.; Hasegawa, S.; Tachikawa, Y.; Nishihara, M.; Matsuda, J.; Kitahara, T.; Lyth, S.M.; et al. Accelerated Durability Testing of Fuel Cell Stacks for Commercial Automotive Applications: A Case Study. J. Electrochem. Soc. 2022, 169, 044523. [Google Scholar] [CrossRef]
- Birkner, L.; Foreta, M.; Rinaldi, A.; Orekhov, A.; Willinger, M.G.; Eichelbaum, M. Dynamic accelerated stress test and coupled on-line analysis program to elucidate aging processes in proton exchange membrane fuel cells. Sci. Rep. 2024, 14, 3999. [Google Scholar] [CrossRef] [PubMed]
- Schüttoff, M.; Wachtel, C.; Schlumberger, R.; Wilhelm, F.; Scholta, J.; Hölzle, M. Development of Accelerated Durability Test Protocols for Polymer Electrolyte Membrane Fuel Cell Stacks Under Realistic Operating Conditions. Fuel Cells 2024, 24, e202300263. [Google Scholar] [CrossRef]
- Zuo, M.J.; Jiang, R.; Yam, R.C.M. Approaches for Modeling of Continuou evices. IEEE Trans. Reliab. 1999, 48, 9–18. [Google Scholar] [CrossRef]
- Chen, H.; Zhan, Z.; Jiang, P.; Sun, Y.; Liao, L.; Wan, X.; Du, Q.; Chen, X.; Song, H.; Zhu, R.; et al. Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA. Appl. Energy 2022, 310, 118556. [Google Scholar] [CrossRef]
- Bae, S.J.; Kim, S.J.; Park, J.I.; Park, C.W.; Lee, J.H.; Song, I.; Lee, N.; Kim, K.B.; Park, J.Y. Lifetime prediction of a polymer electrolyte membrane fuel cell via an accelerated startup-shutdown cycle test. Int. J. Hydrogen Energy 2012, 37, 9775–9781. [Google Scholar] [CrossRef]
- Yuan, T.; Wu, X.; Bae, S.J.; Zhu, X. Reliability assessment of a continuous-state fuel cell stack system with multiple degrading components. Reliab. Eng. Syst. Saf. 2019, 189, 157–164. [Google Scholar] [CrossRef]
- Ma, R.; Yang, T.; Breaz, E.; Li, Z.; Briois, P.; Gao, F. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. Appl. Energy 2018, 231, 102–115. [Google Scholar] [CrossRef]
- Nelson, W. Analysis of accelerated life test data-Part I: The Arrhenius model and graphical methods. IEEE Trans. Electr. Insul. 1971, EI-6, 165–181. [Google Scholar] [CrossRef]
- Meeker, W.Q.; Escobar, L.A.; Lu, C.J. Accelerated Degradation Tests: Modeling and Analysis. Technometrics 1998, 40, 89–99. [Google Scholar] [CrossRef]
- Bae, S.J.; Kim, S.J.; Park, J.I.; Lee, J.H.; Cho, H.; Park, J.Y. Lifetime prediction through accelerated degradation testing of membrane electrode assemblies in direct methanol fuel cells. Int. J. Hydrogen Energy 2010, 35, 9166–9176. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.H.; Lee, J. Development of Driving Cycle for CO2 Emission Test of Heavy-Duty Vehicles; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2013; Volume 11. [Google Scholar] [CrossRef]
- Seo, J.; Kwon, S.; Park, S. Greenhouse gas emissions from heavy-duty natural gas vehicles in Korea. Aerosol Air Qual. Res. 2020, 20, 1418–1428. [Google Scholar] [CrossRef]
- Han, J.; Han, J.; Yu, S. Experimental analysis of performance degradation of 3-cell PEMFC stack under dynamic load cycle. Int. J. Hydrogen Energy 2020, 45, 13045–13054. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Lu, Z. Thermal management issues in a PEMFC stack—A brief review of current status. Appl. Therm. Eng. 2009, 29, 1276–1280. [Google Scholar] [CrossRef]
- Rosli, R.E.; Sulong, A.B.; Daud, W.R.; Zulkifley, M.A.; Husaini, T.; Rosli, M.I.; Majlan, E.H.; Haque, M.A. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. Int. J. Hydrogen Energy 2017, 42, 9293–9314. [Google Scholar] [CrossRef]
- Tsotridis, G.; Pilenga, A.; Marco, G.D.; Malkow, T. EU Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications; Publications Office: Luxembourg, 2015. [Google Scholar]
- Bae, S.J.; Kim, S.J.; Um, S.; Park, J.Y.; Lee, J.H.; Cho, H. A prediction model of degradation rate for membrane electrode assemblies in direct methanol fuel cells. Int. J. Hydrogen Energy 2009, 34, 5749–5758. [Google Scholar] [CrossRef]
- Laidler, K.J. The development of the Arrhenius equation. J. Chem. Educ. 1984, 61, 494. [Google Scholar] [CrossRef]
- Lindstrom, M.J.; Bates, D.M. Nonlinear Mixed Effects Models for Repeated Measures Data. Biometrics 1990, 46, 673–687. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Heisterkamp, S.; Van Willigen, B.; Maintainer, R. Package ‘nlme’. Linear and Nonlinear Mixed Effects Models, Version; 2017; Volume 3, p. 274. Available online: https://cran.r-project.org/web/packages/nlme/nlme.pdf (accessed on 22 January 2025).
- Sadeghian, S.; Jafari, M. Density functional investigation of oxygen reduction reaction on Pt3Pd alloy electrocatalyst. Mater. Res. Express 2019, 7, 1. [Google Scholar] [CrossRef]
- Stephens, I.E.; Bondarenko, A.S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762. [Google Scholar] [CrossRef]
- Lee, C.; Lim, M.; Kim, C.; Bae, S.J. Reliability analysis of accelerated destructive degradation testing data for bi-functional dc motor systems. Appl. Sci. 2021, 11, 2537. [Google Scholar] [CrossRef]
Degradation Model | Linear | Exponential | Power | Bi-Exponential |
---|---|---|---|---|
65 °C | 0.905 | 0.366 | 0.156 | 0.153 |
80 °C | 1.010 | 0.869 | 1.044 | 0.458 |
Total | 0.957 | 0.617 | 0.600 | 0.305 |
95% Confidence Intervals | |||||||
---|---|---|---|---|---|---|---|
Parameter | Estimate | Lower | Upper | Std. Error | DF | t-Value | p-Value |
95.314 | 95.123 | 95.505 | 395 | 973.238 | |||
395 | 11.499 | ||||||
4.802 | 4.609 | 4.995 | 395 | 48.552 | |||
395 | 10.213 | ||||||
0.808 | 0.706 | 0.909 | 395 | 15.570 | |||
0.528 | 0.356 | 0.701 | 395 | 5.994 |
Percentile | 1 | 5 | 10 | 20 | 30 | 40 | 50 |
---|---|---|---|---|---|---|---|
Lifetime (h) | 2812 | 3116 | 3273 | 3481 | 3636 | 3761 | 3895 |
Distance (km) | 112,480 | 124,640 | 130,920 | 139,240 | 145,440 | 150,440 | 155,800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Kim, M.; Park, J.; Goo, Y. Proton Exchange Membrane Fuel Cell Stack Durability Prediction Using Arrhenius-Based Accelerated Degradation Model. Appl. Sci. 2025, 15, 1300. https://doi.org/10.3390/app15031300
Choi Y, Kim M, Park J, Goo Y. Proton Exchange Membrane Fuel Cell Stack Durability Prediction Using Arrhenius-Based Accelerated Degradation Model. Applied Sciences. 2025; 15(3):1300. https://doi.org/10.3390/app15031300
Chicago/Turabian StyleChoi, Youngjin, MyongHwan Kim, JiYoung Park, and Youngmo Goo. 2025. "Proton Exchange Membrane Fuel Cell Stack Durability Prediction Using Arrhenius-Based Accelerated Degradation Model" Applied Sciences 15, no. 3: 1300. https://doi.org/10.3390/app15031300
APA StyleChoi, Y., Kim, M., Park, J., & Goo, Y. (2025). Proton Exchange Membrane Fuel Cell Stack Durability Prediction Using Arrhenius-Based Accelerated Degradation Model. Applied Sciences, 15(3), 1300. https://doi.org/10.3390/app15031300