Dietary Intake According to the Evolution of the Resting Metabolic Rate and Body Composition of an Elite Olympic Athlete over a Macrocycle: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
- -
- It provides an individualized analysis: this case study enables a detailed examination of an athlete under specific conditions (an elite Olympic athlete). This is fundamental for understanding unique physiological responses, which may be concealed in group studies;
- -
- It documents real-time changes: this case study tracks changes in real time over an entire macrocycle, providing a detailed temporal perspective that is rarely captured in other types of studies;
- -
- It validates personalized interventions: by investigating a single case, the effectiveness of personalized dietary adjustments based on measured physiological parameters can be validated, contributing to a deeper understanding of causal relationships;
- -
- Elite Olympic athletes represent a distinct subgroup with unique physical characteristics and physiological needs, often under-represented in generalized research.
2.2. Presentation of Athlete’s Characteristics
2.3. Study Design
2.4. Resting Metabolic Rate Measurement
2.5. Anthropometric and Body Composition Assessment
3. Results
3.1. Anthropometric, Body Composition Parameters, and Resting Metabolic Rate Values
3.2. Dietary and Nutrient Intakes During the Macrocycle
4. Discussion
5. Conclusions
New Directions of Research
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ant | Anthropometric |
BC | Body composition |
INT | International competition |
MetaB | Metabolic |
NAT | National competition |
RMR | Resting metabolic rate |
S.U. at R. | Substrates used at rest |
RQ | Respiratory quotient |
References
- Barbosa, A.C.; Valadao, P.F.; Wilke, C.F.; Martins, F.D.S.; Silva, D.C.P.; Volkers, S.A.; Lima, C.O.V.; Ribeiro, J.R.C.; Bittencourt, N.F.; Barroso, R. The road to 21 seconds: A case report of a 2016 Olympic swimming sprinter. Int. J. Sports Sci. Coach. 2019, 14, 393–405. [Google Scholar] [CrossRef]
- Domínguez, R.; Jesús-Sánchez-Oliver, A.; Cuenca, E.; Jodra, P.; Da Silva, S.F.; Mata-Ordóñez, F. Nutritional needs in the professional practice of swimming: A review. J. Exerc. Nutr. Biochem. 2017, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Freire, R.; Alcantara, J.M.; Hausen, M.; Itaborahy, A. The estimation of the resting metabolic rate is affected by the method of gas exchange data selection in high-level athletes. Clin. Nutr. ESPEN 2021, 41, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, E.E.M.; Alves, V.G.F.; Da Fonseca, R.B.V. Indirect calorimetry: Methodology, instruments and clinical application. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 247–256. [Google Scholar] [CrossRef]
- Balci, A.; Badem, E.A.; Yılmaz, A.E.; Devrim-Lanpir, A.; Akınoğlu, B.; Kocahan, T.; Hasanoğlu, A.; Hill, L.; Rosemann, T.; Knechtle, B. Current predictive resting metabolic rate equations Are Not sufficient to determine proper resting energy expenditure in Olympic young adult national team athletes. Front. Physiol. 2021, 12, 625370. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Venckunas, T.; Minderis, P.; Silinskas, V.; Buliuolis, A.; Maughan, R.J.; Kamandulis, S. Effect of Low vs. High Carbohydrate Intake after Glycogen-Depleting Workout on Subsequent 1500 m Run Performance in High-Level Runners. Nutrients 2024, 16, 2763. [Google Scholar] [CrossRef] [PubMed]
- Larrosa, M.; Gil-Izquierdo, A.; González-Rodríguez, L.G.; Alférez, M.J.M.; San Juan, A.F.; Sánchez-Gómez, Á.; Calvo-Ayuso, N.; Ramos-Álvarez, J.J.; Fernández-Lázaro, D.; Lopez-Grueso, R.; et al. Nutritional strategies for optimizing health, sports performance, and recovery for female athletes and other physically active women: A systematic review. Nutr. Rev. 2024, nuae082. [Google Scholar] [CrossRef]
- Palazzo, R.; Parisi, T.; Rosa, S.; Corsi, M.; Falconi, E.; Stefani, L. Energy Availability and Body Composition in Professional Athletes: Two Sides of the Same Coin. Nutrients 2024, 16, 3507. [Google Scholar] [CrossRef]
- Ramos-Campo, D.J.; Clemente-Suárez, V.J.; Cupeiro, R.; Benítez-Muñoz, J.A.; Andreu Caravaca, L.; Rubio-Arias, J.Á. The ergogenic effects of acute carbohydrate feeding on endurance performance: A systematic review, meta-analysis and meta-regression. Crit. Rev. Food Sci. Nutr. 2023, 64, 11196–11205. [Google Scholar] [CrossRef]
- Clark, M.; Cross, K.; Singer, B. Fluid Loss and Hydration. In Clinical Nutrition in Athletic Training; Routledge: London, UK, 2024; pp. 49–59. [Google Scholar]
- Hulland, S.C.; Trakman, G.L.; Alcock, R.D. Adolescent athletes have better general than sports nutrition knowledge and lack awareness of supplement recommendations: A systematic literature review. Br. J. Nutr. 2024, 131, 1362–1376. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Valverde, D.; Castro, C.; Bonilla, D.A.; Cardozo, L.A.; Gómez-Carmona, C.D. Proteinuria and Significant Dehydration in a Short-Steep Triathlon: Preliminary Observational Report. Physiologia 2024, 4, 393–403. [Google Scholar] [CrossRef]
- Segreti, A.; Celeski, M.; Guerra, E.; Crispino, S.P.; Vespasiano, F.; Buzzelli, L.; Fossati, C.; Papalia, R.; Pigozzi, F.; Grigioni, F. Effects of Environmental Conditions on Athlete’s Cardiovascular System. J. Clin. Med. 2024, 13, 4961. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Jones, M.T.; Askow, A.T.; Luedke, J.; Erickson, J.L.; Fields, J.B.; Kerksick, C.M. Sex Differences in Resting Metabolic Rate among Athletes and Association with Body Composition Parameters: A Follow-Up Investigation. J. Funct. Morphol. Kinesiol. 2023, 8, 109. [Google Scholar] [CrossRef]
- Trappe, T.A.; Gastaldelli, A.M.A.L.I.A.; Jozsi, A.C.; Troup, J.P.; Wolfe, R.R. Energy expenditure of swimmers during high volume training. Med. Sci. Sports Exerc. 1997, 29, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Woods, A.L.; Rice, A.J.; Garvican-Lewis, L.A.; Wallett, A.M.; Lundy, B.; Rogers, M.A.; Welvaert, M.; Halson, S.; McKune, A.; Thompson, K.G. The effects of intensified training on resting metabolic rate (RMR), body composition and performance in trained cyclists. PLoS ONE 2018, 13, e0191644. [Google Scholar] [CrossRef]
- Shaw, G.; Boyd, K.T.; Burke, L.M.; Koivisto, A. Nutrition for swimming. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Morell, P.; Fiszman, S. Revisiting the role of protein-induced satiation and satiety. Food Hydrocoll. 2017, 68, 199–210. [Google Scholar] [CrossRef]
- Moore, D.R. Nutrition to support recovery from endurance exercise: Optimal carbohydrate and protein replacement. Curr. Sports Med. Rep. 2015, 14, 294–300. [Google Scholar] [CrossRef]
- Compher, C.; Frankenfield, D.; Keim, N.; Roth-Yousey, L. Evidence Analysis Working Group, Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review. J. Am. Diet. Assoc. 2006, 106, 881–903. [Google Scholar] [CrossRef]
- Rodríguez, G.; Moreno, L.; Blay, M.; Blay, V.A.; Fleta, J.; Sarria, A.; Bueno, M. Body fat measurement in adolescents: Comparison of skinfold thickness equations with dual-energy X-ray absorptiometry. Eur. J. Clin. Nutr. 2005, 59, 1158–1166. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Hou, L.; Xia, X.; Hu, F.; Luo, S.; Zhang, G.; Dong, B. Associations of body mass index, visceral fat area, waist circumference, and waist-to-hip ratio with cognitive function in Western China: Results from WCHAT Study. J. Nutr. Health Aging 2021, 25, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, C.; Pirkis, J.; Lambert, K.A.; Perret, J.L.; Ali, G.B.; Lodge, C.J.; Bowatte, G.; Hamilton, G.S.; Matheson, M.C.; Bui, D.S.; et al. Life course BMI trajectories from childhood to mid-adulthood are differentially associated with anxiety and depression outcomes in middle age. Int. J. Obes. 2023, 47, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Bešević, J.; Conroy, M.; Omiyale, W.; Woodward, M.; Lacey, B.; Allen, N. Waist-to-height ratio and body fat percentage as risk factors for ischemic cardiovascular disease: A prospective cohort study from UK Biobank. Am. J. Clin. Nutr. 2024, 119, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, R.; Talbot, L.A. Use of bioelectrical impedance analysis in the evaluation, treatment, and prevention of overweight and obesity. J. Am. Assoc. Nurse Pract. 2007, 19, 235–241. [Google Scholar] [CrossRef]
- Carter, J.L.; Heath, B.H. Somatotyping: Development and Applications; Cambridge University Press: Cambridge, UK, 1990; Volume 5. [Google Scholar]
- Karupaiah, T. Limited (ISAK) profiling the International Society for the Advancement of Kinanthropometry (ISAK). J. Ren. Nutr. Metab. 2018, 3, 11. [Google Scholar] [CrossRef]
- Norton, K.I. Standards for anthropometry assessment. Kinanthropometry Exerc. Physiol. 2018, 4, 68–137. [Google Scholar] [CrossRef]
- Stellingwerff, T.; Maughan, R.J.; Burke, L.M. Nutrition for power sports: Middle-distance running, track cycling, rowing, canoeing/kayaking, and swimming. In Food, Nutrition and Sports Performance III; Routledge: London, UK, 2013; pp. 79–89. [Google Scholar] [CrossRef]
- Kumstát, M.; Rybářová, S.; Thomas, A.; Novotný, J. Case study: Competition nutrition intakes during the open water swimming grand prix races in elite female swimmer. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A. A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sports Med. 2014, 44 (Suppl. S1), 25–33. [Google Scholar] [CrossRef]
- Pelly, F.E.; Thurecht, R. Evaluation of athletes’ food choices during competition with use of digital images. Nutrients 2019, 11, 1627. [Google Scholar] [CrossRef] [PubMed]
- Stables, R.G.; Kasper, A.M.; Sparks, S.A.; Morton, J.P.; Close, G.L. An assessment of the validity of the remote food photography method (termed snap-N-send) in experienced and inexperienced sport nutritionists. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 125–134. [Google Scholar] [CrossRef] [PubMed]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Nutrition, energy, and human performance. In Exercise Physiology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Burke, L.M.; Mujika, I. Nutrition for recovery in aquatic sports. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef]
- Muscella, A.; Stefàno, E.; Lunetti, P.; Capobianco, L.; Marsigliante, S. The regulation of fat metabolism during aerobic exercise. Biomolecules 2020, 10, 1699. [Google Scholar] [CrossRef]
- Montenegro, K.R.; Schneider, C.D.; Trindade, C.D.Z.; Castro, F.A.D.S.; Baroni, B.M. Dietary intake in high-level swimmers. A 32-week prospective cohort study. Mot. Rev. De Educ. Física 2017, 23, e101745. [Google Scholar] [CrossRef]
- Kashiwazaki, H.; Dejima, Y.; Suzuki, T. Influence of upper and lower thermoneutral room temperatures (20 °C and 25 °C) on fasting and post-prandial resting metabolism under different outdoor temperatures. Eur. J. Clin. Nutr. 1990, 44, 405–413. [Google Scholar] [PubMed]
- Garthe, I.; Raastad, T.; Refsnes, P.E.; Sundgot-Borgen, J. Effect of nutritional intervention on body composition and performance in elite athletes. Eur. J. Sport Sci. 2013, 13, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Reale, R.; Burke, L.M.; Cox, G.R.; Slater, G. Body composition of elite Olympic combat sport athletes. Eur. J. Sport Sci. 2020, 20, 147–156. [Google Scholar] [CrossRef]
- Trindade, C.D.Z.; Montenegro, K.R.; Schneider, C.D.; de Souza Castro, F.A.; Baroni, B.M. Adequacy of dietary intake in swimmers during the general preparation phase. Sport Sci. Health 2017, 13, 373–380. [Google Scholar] [CrossRef]
- Pelly, F.E.; Thurecht, R.L.; Slater, G. Determinants of food choice in athletes: A systematic scoping review. Sports Med. -Open 2022, 8, 77. [Google Scholar] [CrossRef] [PubMed]
- Stănescu, M.; Ciolcă, C.; Stoicescu, M. Comparative analysis of the biological and motor potential of school population from Romania (urban and rural areas). In European Proceedings of Social and Behavioural Sciences; Lumen Publishing: Iasi, Romania, 2016. [Google Scholar] [CrossRef]
2022 | 2023 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep |
RMR | INT | INT | RMR | INT | RMR | NAT | NAT | INT | INT | |||||||
RMR | RMR | RMR | RMR | RMR | ||||||||||||
BC | BC | BC | BC | BC | BC | BC | BC | BC | BC | BC | BC | BC | BC |
Variables | TEM |
---|---|
Weight (kg) | 0.24 |
Body fat (%) | 0.15 |
Skinfolds (mm) | 2.20 |
Training Intensity Level | Carbohydrates (g/kg/Day) | Proteins (g/kg/Day) | Fats (% of Total Energy) |
---|---|---|---|
Low (Recovery or Technique Sessions) | 3–5 | 1.2–1.4 | 20–30% |
Moderate (Endurance Training) | 5–7 | 1.4–1.6 | 20–30% |
High (Threshold or Interval Training) | 6–10 | 1.6–1.8 | 20–25% |
Very High (Competition or Peak Training) | 8–12 | 1.8–2.2 | 20–25% |
Weight (kg) | Body Fat (%) | FM (kg) | FFM (kg) | Sum of 8 Skinfolds (mm) | RMR (kcal/Day) | |
---|---|---|---|---|---|---|
Mean | 79.26 | 7.75 | 6.14 | 73.12 | 61.46 | 2905.75 |
Standard Error | 0.48 | 0.16 | 0.15 | 0.36 | 1.85 | 144.25 |
Median | 80.00 | 7.80 | 6.20 | 73.92 | 62.00 | 3078.00 |
Standard Dev. | 1.72 | 0.57 | 0.56 | 1.30 | 6.66 | 407.99 |
Range | 5.20 | 1.90 | 1.67 | 3.89 | 22.00 | 1133.00 |
Minimum | 76.00 | 6.90 | 5.31 | 70.61 | 52.00 | 2328.00 |
Maximum | 81.20 | 8.80 | 6.98 | 74.50 | 74.00 | 3461.00 |
Confidence Level (95.0%) | 1.04 | 0.35 | 0.34 | 0.79 | 4.03 | 341.09 |
CV | 2% | 7% | 9% | 2% | 11% | 14% |
Rest Day | 1x Training Session/Day | 2x Training Sessions/Day | |
---|---|---|---|
Mean | 2910.294 | 3805.979 | 4238.619 |
Standard Error | 134.1226 | 137.7091 | 198.927 |
Median | 3021.75 | 3786.75 | 4092.75 |
Standard Deviation | 379.356 | 389.5002 | 562.6505 |
Range | 1012.4 | 1272.72 | 1818.8 |
Minimum | 2467.6 | 3327.28 | 3741.2 |
Maximum | 3480 | 4600 | 5560 |
Confidence Level (95.0%) | 317.1495 | 325.6303 | 470.3876 |
CV | 13% | 10% | 13% |
CHO Intake (g/Day) | PRO Intake (g/Day) | Fat Intake (g/Day) | |||||||
---|---|---|---|---|---|---|---|---|---|
Rest Day | 1x Training Sessions/Day | 2x Training Sessions/Day | Rest Day | 1x Training Sessions/Day | 2x Training Sessions/Day | Rest Day | 1x Training Sessions/Day | 2x Training Sessions/Day | |
Mean | 296.44 | 568.99 | 668.13 | 197.88 | 152.63 | 158.28 | 103.67 | 103.67 | 103.67 |
Standard Error | 19.52 | 22.40 | 42.18 | 1.55 | 5.94 | 1.23 | 6.92 | 6.92 | 6.92 |
Median | 306.00 | 556.85 | 636.40 | 199.50 | 153.00 | 159.60 | 114.75 | 114.75 | 114.75 |
Standard Deviation | 55.22 | 63.35 | 119.32 | 4.38 | 16.79 | 3.49 | 19.56 | 19.56 | 19.56 |
Range | 161.20 | 202.60 | 363.00 | 12.25 | 49.68 | 9.80 | 41.15 | 41.15 | 41.15 |
Minimum | 238.80 | 517.40 | 597.00 | 190.00 | 135.32 | 152.00 | 79.60 | 79.60 | 79.60 |
Maximum | 400.00 | 720.00 | 960.00 | 202.25 | 185.00 | 161.80 | 120.75 | 120.75 | 120.75 |
Confidence Level (95.0%) | 46.17 | 52.96 | 99.75 | 3.66 | 14.04 | 2.92 | 16.35 | 16.35 | 16.35 |
CV | 19% | 11% | 18% | 2% | 11% | 2% | 19% | 19% | 19% |
Pearson’s r | Ant Data: Weight (kg) | Ant Data: Body Fat (%) | Ant Data: FM (kg) | Ant Data: FFM (kg) | Ant Data: Sum of 8 Skinfolds (mm) | MetaB: RMR (kcal/Day) | MetaB: VO2 Max (mL/min−1/kg−1) | MetaBVCO2 (L/min) | MetaB: RQ | S.U. at R.: FAT | S.U. at R.: FAT | S.U. at R.: CHO | S.U. at R.: CHO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ant data: Weight | - | 0.64 | 0.76 | 0.96 | 0.57 | −0.39 | −0.34 | −0.48 | −0.24 | 0.34 | 0.27 | −0.34 | −0.44 |
Ant data: Body fat | 0.64 | - | 0.98 | 0.41 | 0.99 | −0.29 | −0.18 | −0.60 | −0.58 | 0.67 | 0.64 | −0.67 | −0.75 |
Ant data: FM | 0.76 | 0.98 | - | 0.56 | 0.96 | −0.33 | −0.23 | −0/445.61 | −0.55 | 0.64 | 0.60 | −0.64 | −0.73 |
Ant data: FFM | 0.96 | 0.41 | 0.56 | - | 0.32 | −0.37 | −0.34 | −0.36 | −0.08 | 0.17 | 0.09 | −0.17 | −0.26 |
Ant data: Sum of 8 skinfolds | 0.57 | 0.99 | 0.96 | 0.32 | - | −0.26 | −0.15 | −0.60 | −0.64 | 0.71 | 0.69 | −0.71 | −0.79 |
MetaB: RMR | −0.39 | −0.29 | −0.33 | −0.37 | −0.26 | - | 0.99 | 0.83 | 0.04 | −0.13 | 0.17 | 0.13 | 0.29 |
MetaB: VO2 max | −0.34 | −0.18 | −0.23 | −0.34 | −0.15 | 0.99 | - | 0.74 | −0.11 | 0.02 | 0.32 | −0.02 | 0.14 |
MetaB: VCO2 | −0.48 | −0.60 | −0.61 | −0.36 | −0.60 | 0.83 | 0.74 | - | 0.59 | −0.66 | −0.40 | 0.66 | 0.77 |
MetaB: RQ | −0.24 | −0.58 | −0.55 | −0.08 | −0.64 | 0.04 | −0.11 | 0.59 | - | −0.99 | −0.96 | 0.99 | 0.95 |
S.U. at R.: FAT | 0.34 | 0.67 | 0.64 | 0.17 | 0.71 | −0.13 | 0.02 | −0.66 | −0.99 | - | 0.95 | −1.00 | −0.98 |
S.U. at R.: FAT | 0.27 | 0.64 | 0.60 | 0.09 | 0.69 | 0.17 | 0.32 | −0.40 | −0.96 | 0.95 | - | −0.95 | −0.89 |
S.U. at R.: CHO | −0.34 | −0.67 | −0.64 | −0.17 | −0.71 | 0.13 | −0.02 | 0.66 | 0.99 | −1.00 | −0.95 | - | 0.98 |
S.U. at R.: CHO | −0.44 | −0.75 | −0.73 | −0.26 | −0.79 | 0.29 | 0.14 | 0.77 | 0.95 | −0.98 | −0.89 | 0.98 | - |
Competition Type | Effort Type | Nutritional Focus | Advice for Coaches | ||
---|---|---|---|---|---|
Carbohydrates (g/Day) | Proteins (g/kg/Day) | Fats (%) | |||
Sprint | Anaerobic | 8–10 | 1.6–1.8 | 20–30 | Schedule carbohydrate-rich meals 24–48 h before competitions. Incorporate fast-digesting protein sources post-training for rapid recovery. |
Endurance | Aerobic | 6–8 | 1.4–1.6 | 25–30 | Train athletes to consume drinks/gels during training sessions and races. Focus on maintaining a balanced energy intake. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saftel, M.A.; Leonte, N.; Maftei, A.; Moanță, A.D. Dietary Intake According to the Evolution of the Resting Metabolic Rate and Body Composition of an Elite Olympic Athlete over a Macrocycle: A Case Study. Appl. Sci. 2025, 15, 1304. https://doi.org/10.3390/app15031304
Saftel MA, Leonte N, Maftei A, Moanță AD. Dietary Intake According to the Evolution of the Resting Metabolic Rate and Body Composition of an Elite Olympic Athlete over a Macrocycle: A Case Study. Applied Sciences. 2025; 15(3):1304. https://doi.org/10.3390/app15031304
Chicago/Turabian StyleSaftel, Mihaiță Alin, Nicoleta Leonte, Alexandru Maftei, and Alina Daniela Moanță. 2025. "Dietary Intake According to the Evolution of the Resting Metabolic Rate and Body Composition of an Elite Olympic Athlete over a Macrocycle: A Case Study" Applied Sciences 15, no. 3: 1304. https://doi.org/10.3390/app15031304
APA StyleSaftel, M. A., Leonte, N., Maftei, A., & Moanță, A. D. (2025). Dietary Intake According to the Evolution of the Resting Metabolic Rate and Body Composition of an Elite Olympic Athlete over a Macrocycle: A Case Study. Applied Sciences, 15(3), 1304. https://doi.org/10.3390/app15031304