Multi-Scenario Prediction of Dynamic Responses of the Carbon Sink Potential in Land Use/Land Cover Change in Areas with Steep Slopes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Sources and Preconditioning
2.2.1. Data Source and Preprocessing
2.2.2. Carbon Density Data
2.3. CS Simulation Framework Based on LUCC
2.3.1. GeoSOS-FLUS Model
2.3.2. InVEST Model
2.3.3. Scene Setting
2.3.4. Accuracy Verification
2.4. Topographic Gradient
2.4.1. Topographic Relief
2.4.2. Topographic Niche Index
2.4.3. Topographic Data Grading Standards
2.5. Exploratory Spatial Analysis
2.5.1. Spatial Autocorrelation
2.5.2. Bivariate Spatial Autocorrelation Between CS and Topographic Gradient
3. Research Results
3.1. Dynamic Evolution of Land Use from 2000 to 2020
3.1.1. Spatiotemporal Characteristics of Land Use
3.1.2. Spatial and Temporal Dynamics of CS
3.2. Impacts of Land Use Type Changes on CS
3.3. Spatial Dependence Mechanism Underlying CS
3.3.1. Gradient Effect of Terrain Driving CS
3.3.2. Spatial Correlation Between CS and the Topographic Gradient
3.4. Spatio-Temporal Characteristics of LUCC and C Storage Under Multi-Scenario Simulations
4. Discussion
4.1. Response of CS to Land Use Change
4.2. Effect of the Transition Deformation Zone on CS Change
4.3. Strategies for the Sustainable Management of CS
4.4. Deficiency and Prospects
5. Conclusions
- (1)
- Over the past two decades, CS in the BRB has risen by 558 tons, primarily driven by the conversion of arable land to woodland. Spatially, CS is higher in the western and northwestern parts of the area, whereas the eastern and northeastern areas exhibit lower CS levels. This distribution is highly consistent with the topographic characteristics and landscape pattern.
- (2)
- The variation trend for CS in different scenarios is significantly different. In the ND scenario, the disorderly expansion of economic land at the cost of ecological environment leads to excessive reduction of cultivated land and ecological land, and finally aggravates the loss of CS. At the same time, although the cultivated land protection policy has a certain positive effect, its long-term effect is uncertain, which may eventually lead to the decline in regional CS. On the contrary, strengthening ecological protection can effectively expand the area of forest and grassland, and reduce the encroachment of construction land on ecological land, thus significantly improving the regional carbon sink capacity and bringing significant environmental benefits.
- (3)
- Along the elevation gradient, CS has an inverted U-shaped relationship with the topographic gradient, showing a synergistic effect, and forming an obvious stepped spatial distribution. CS peaks between 2500 and 3300 m above sea level, with superior natural resources in areas with slopes of 27° to 40° and topographic relief of 700 to 1000, resulting in carbon accumulation. However, these steep slopes still require soil and water conservation, and EP projects to further enhance carbon sequestration capacity. Therefore, it is very important to conduct topographic gradient zoning management for steep-slope areas, and a long-term ecological monitoring system should be established to evaluate the effect of ecological protection measures and timely adjust management strategies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erb, K.-H.; Kastner, T.; Plutzar, C.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; et al. Unexpectedly Large Impact of Forest Management and Grazing on Global Vegetation Biomass. Nature 2018, 553, 73–76. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Luo, G.; Chen, X.; Maisupova, B.; Madaminov, A.A.; Han, Q.; Djenbaev, B.M. Carbon Stock and Its Responses to Climate Change in Central Asia. Glob. Change Biol. 2015, 21, 1951–1967. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Ponce, A.; Corona-Núñez, R.; Kraxner, F.; Leduc, S.; Patrizio, P. Identifying Effects of Land Use Cover Changes and Climate Change on Terrestrial Ecosystems and Carbon Stocks in Mexico. Glob. Environ. Change 2018, 53, 12–23. [Google Scholar] [CrossRef]
- Li, J.; Guo, X.; Chuai, X.; Xie, F.; Yang, F.; Gao, R.; Ji, X. Reexamine China’s Terrestrial Ecosystem Carbon Balance under Land Use-Type and Climate Change. Land Use Policy 2021, 102, 105275. [Google Scholar] [CrossRef]
- Liu, J.; Yan, Q.; Zhang, M. Ecosystem Carbon Storage Considering Combined Environmental and Land-Use Changes in the Future and Pathways to Carbon Neutrality in Developed Regions. Sci. Total Environ. 2023, 903, 166204. [Google Scholar] [CrossRef] [PubMed]
- Vizcaíno-Bravo, Q.; Williams-Linera, G.; Asbjornsen, H. Biodiversity and Carbon Storage Are Correlated along a Land Use Intensity Gradient in a Tropical Montane Forest Watershed, Mexico. Basic Appl. Ecol. 2020, 44, 24–34. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D. Spatio-Temporal Evolution of Carbon Stocks in the Yellow River Basin Based on InVEST and CA-Markov Models. Chin. J. Eco-Agric. 2021, 29, 1018–1029. [Google Scholar]
- Yadav, R.P.; Gupta, B.; Bhutia, P.L.; Bisht, J.K.; Pattanayak, A. Biomass and Carbon Budgeting of Land Use Types along Elevation Gradient in Central Himalayas. J. Clean. Prod. 2019, 211, 1284–1298. [Google Scholar] [CrossRef]
- Raich, J.W.; Nadelhoffer, K.J. Belowground Carbon Allocation in Forest Ecosystems: Global Trends. Ecology 1989, 70, 1346–1354. [Google Scholar] [CrossRef]
- Huo, F.; Guo, F.; Shi, P.; Gao, Z.; Zhao, Y.; Wang, Y.; Meng, X.; Yue, D. The Application of Remote Sensing Technology in Post-Disaster Emergency Investigations of Debris Flows: A Case Study of the Shuimo Catchment in the Bailong River, China. Remote Sens. 2024, 16, 2817. [Google Scholar] [CrossRef]
- Liu, W.; Li, C.; Wu, Y. Reserves Estimation and Spatial Distribution of the Organic Carbon Pool in Lanzhou-Baiyin Area, Gansu. Geophys. Geochem. Explor. 2012, 36, 367–371. [Google Scholar]
- Liu, W. The Soil or Ganic Carbon Density and Its Distribution Characteristics in Zhangye-Yongchang Area, Gansu Province. Geophys. Geochem. Explor. 2013, 37, 552–556. [Google Scholar]
- Alam, S.A.; Starr, M.; Clark, B.J.F. Tree Biomass and Soil Organic Carbon Densities across the Sudanese Woodland Savannah: A Regional Carbon Sequestration Study. J. Arid Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Deng, J.; Ding, W.; Pu, X.; Lv, Y.; Wang, Y. Spatial-Temporal Distribution of Carbon Storage in Qilian Mountain National Park Based on InVEST Model. Bull. Soil Water Conserv. 2022, 42, 324–334+396. [Google Scholar]
- Ren, X.; Pei, T.; Chen, Y.; Xie, B.; Chen, D. Impact of Land Use Change on Carbon Storage in Gansu Province Based on Carbon Density Correction. Ecol. Sci. 2021, 40, 66–74. [Google Scholar]
- Li, J.; Liu, G.; Zhao, J.; Zuo, L.; Zheng, S.; Su, X. The Variation of the 400 Mm Isohyet and Its Influence Mechanism on the Qinghai-Tibet Plateau from 1982 to 2021. Ecol. Indic. 2024, 159, 111746. [Google Scholar] [CrossRef]
- Hufkens, K.; Scheunders, P.; Ceulemans, R. Ecotones in Vegetation Ecology: Methodologies and Definitions Revisited. Ecol. Res. 2009, 24, 977–986. [Google Scholar] [CrossRef]
- Nishita, M.; Park, S.-Y.; Nishio, T.; Kamizaki, K.; Wang, Z.; Tamada, K.; Takumi, T.; Hashimoto, R.; Otani, H.; Pazour, G.J.; et al. Ror2 Signaling Regulates Golgi Structure and Transport through IFT20 for Tumor Invasiveness. Sci. Rep. 2017, 7, 1. [Google Scholar] [CrossRef]
- Qiao, L.; Meng, X.; Chen, G.; Zhang, Y.; Guo, P.; Zeng, R.; Li, Y. Effect of Rainfall on a Colluvial Landslide in a Debris Flow Valley. J. Mt. Sci. 2017, 14, 1113–1123. [Google Scholar] [CrossRef]
- Wang, Y.; Ge, J.; Zhang, Y.; Lu, J.; Zhang, Y.; Ma, F. Health Assessment of the Current Situation of Rivers and Discussion on Ecological Restoration Strategies: A Case Study of the Gansu Province Section of the Bailong River. Ecol. Indic. 2024, 163, 112038. [Google Scholar] [CrossRef]
- Ali, A.; Dai, D.; Akhtar, K.; Teng, M.; Yan, Z.; Urbina-Cardona, N.; Mullerova, J.; Zhou, Z. Response of Understory Vegetation, Tree Regeneration, and Soil Quality to Manipulated Stand Density in a Pinus Massoniana Plantation. Glob. Ecol. Conserv. 2019, 20, e00775. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, H.; Qu, M.; Yang, S.; Wang, W.; Zhao, W. The Interactions among Herbaceous Diversity, Edaphic Factors, and Topography under Typical Afforestation in the Transition Zone between the Qinghai–Tibet Plateau and Loess Plateau. J. Plant Interact. 2021, 16, 75–82. [Google Scholar] [CrossRef]
- Giardina, C.P.; Ryan, M.G. Evidence That Decomposition Rates of Organic Carbon in Mineral Soil Do Not Vary with Temperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yang, Y.; Liu, L.; Li, X.; Zhao, Y.; Yuan, Y. Research Review on Total Below Ground Carbon Atbcation in Forest Ecosystems. J. Subtrop. Resour. Environ. 2007, 1, 34–42. [Google Scholar] [CrossRef]
- Ma, R.; Zhou, W.; Ren, J.; Huang, Y.; Wang, H. Multi-Scenario Simulation and Optimization Control of Ecological Security Based on GeoSOS-FLUS Model in Ecological Fragile Area in Northeast Qinghai-Tibet Plateau, China. Ecol. Indic. 2023, 151, 110324. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Wang, T.; Ruan, Z.; Du, P. Spatial–Temporal Evolution Analysis of Multi-Scenario Land Use and Carbon Storage Based on PLUS-InVEST Model: A Case Study in Dalian, China. Ecol. Indic. 2024, 166, 112448. [Google Scholar] [CrossRef]
- Liu, E.; Liu, Z.; Sun, Z.; Li, J.; Gong, H.; Peng, J.; Ouyang, Z. Soil Inorganic Carbon Stocks Increase Non-Synergistically with Soil Organic Carbon after Ecological Restoration Practices in Drylands. J. Environ. Manag. 2023, 348, 119070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, X.; Luo, Y.; Chen, L.; Wang, M. Spatial Heterogeneity and Driving Mechanisms of Carbon Storage in the Urban Agglomeration within Complex Terrain: Multi-Scale Analyses under Localized SSP-RCP Narratives. Sustain. Cities Soc. 2024, 109, 105520. [Google Scholar] [CrossRef]
- Li, H.; Qu, Y.; Zeng, X.; Zhang, H.; Cui, L.; Luo, C. Dynamic Response of the Vegetation Carbon Storage in the Sanjiang Plain to Changes in Land Use/Cover and Climate. Herit Sci 2021, 9, 134. [Google Scholar] [CrossRef]
- Lal, R. Carbon Sequestration in Dryland Ecosystems. Environ. Manag. 2004, 33, 528–544. [Google Scholar] [CrossRef]
- Zheng, H.; Zheng, H. Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Coastal Area of Shandong Province. Ecol. Indic. 2023, 153, 110474. [Google Scholar] [CrossRef]
- Jevon, F.; Crown, C.A.; Clark, J.A.G.; Doroski, D.A.; Darling, L.; Sonti, N.F.; Yesilonis, I.D.; Dietsch, G.; Bradford, M.; Pregitzer, C.C. Native Trees Are Responsible for the High Carbon Density in Urban Natural Area Forests across Eight United States Cities. J. Appl. Ecol. 2025, 62, 132–143. [Google Scholar] [CrossRef]
- Thakur, T.K.; Swamy, S.L.; Thakur, A.; Mishra, A.; Bakshi, S.; Kumar, A.; Altaf, M.M.; Kumar, R. Land Cover Changes and Carbon Dynamics in Central India’s Dry Tropical Forests: A 25-Year Assessment and Nature-Based Eco-Restoration Approaches. J. Environ. Manag. 2024, 351, 119809. [Google Scholar] [CrossRef]
- Sadat, M.; Zoghi, M.; Malekmohammadi, B. Spatiotemporal Modeling of Urban Land Cover Changes and Carbon Storage Ecosystem Services: Case Study in Qaem Shahr County, Iran. Env. Dev. Sustain. 2020, 22, 8135–8158. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, L.; Li, Z.; Ouyang, X.; Xiao, T.; Wang, H.; Li, W.; Nie, X. Landscape Fragmentation and Regularity Lead to Decreased Carbon Stocks in Basins: Evidence from Century-Scale Research. J. Environ. Manag. 2024, 367, 121937. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Z.; Zuo, Q.; Du, H. Simulating the Impact of Land Use Change on Ecosystem Services in Agricultural Production Areas with Multiple Scenarios Considering Ecosystem Service Richness. J. Clean. Prod. 2023, 397, 136485. [Google Scholar] [CrossRef]
- Pregitzer, C.C.; Bradford, M.A. Associations between Recent Land Use History and Urban Forest Composition. Urban For. Urban Gree. 2023, 90, 128134. [Google Scholar] [CrossRef]
- Bacani, V.M.; Machado Da Silva, B.H.; Ayumi De Souza Amede Sato, A.; Souza Sampaio, B.D.; Rodrigues Da Cunha, E.; Pereira Vick, E.; Ribeiro De Oliveira, V.F.; Decco, H.F. Carbon Storage and Sequestration in a Eucalyptus Productive Zone in the Brazilian Cerrado, Using the Ca-Markov/Random Forest and InVEST Models. J. Clean. Prod. 2024, 444, 141291. [Google Scholar] [CrossRef]
- Hoque, M.Z.; Cui, S.; Islam, I.; Xu, L.; Ding, S. Dynamics of Plantation Forest Development and Ecosystem Carbon Storage Change in Coastal Bangladesh. Ecol. Indic. 2021, 130, 107954. [Google Scholar] [CrossRef]
- Nguemezi, C.; Tematio, P.; Silatsa, F.B.T.; Yemefack, M. Spatial Variation and Temporal Decline (1985–2017) of Soil Organic Carbon Stocks (SOCS) in Relation to Land Use Types in Tombel Area, South-West Cameroon. Soil Tillage Res. 2021, 213, 105114. [Google Scholar] [CrossRef]
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing Land Take by Urban Development and Its Impact on Carbon Storage: Findings from Two Case Studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, H.; Yang, M.; Wang, X.; Jiang, Y.; Zhang, W. Heterogeneity and Optimization of Ecological Security Pattern on a Mountain Town: A Case of Tianzhu County in the Hexi Corridor, China. Front. Environ. Sci. 2023, 10, 1106379. [Google Scholar] [CrossRef]
- He, Y.; Jiang, X.; Wang, N.; Zhang, S.; Ning, T.; Zhao, Y.; Hu, Y. Changes in Mountainous Runoff in Three Inland River Basins in the Arid Hexi Corridor, China, and Its Influencing Factors. Sustain. Cities Soc. 2019, 50, 101703. [Google Scholar] [CrossRef]
- Kaminski, T.; Scholze, M.; Vossbeck, M.; Knorr, W.; Buchwitz, M.; Reuter, M. Constraining a Terrestrial Biosphere Model with Remotely Sensed Atmospheric Carbon Dioxide. Remote Sens. Environ. 2017, 203, 109–124. [Google Scholar] [CrossRef]
- Li, G.; Zhao, C.; Liu, D.; Ling, L.; Huang, C.; Zhang, P.; Wang, S.; Wu, X. Spatial Differentiation of the Leaf Area Index in Forests in Ecological Transition Zones and Its Environmental Response. Eur. J. For. Res. 2024, 143, 1307–1320. [Google Scholar] [CrossRef]
- Wang, N.; Chen, X.; Zhang, Z.; Pang, J. Spatiotemporal Dynamics and Driving Factors of County-Level Carbon Storage in the Loess Plateau: A Case Study in Qingcheng County, China. Ecol. Indic. 2022, 144, 109460. [Google Scholar] [CrossRef]
- Gong, C.; Bai, J.; Wang, J.; Zhou, Y.; Kang, T.; Wang, J.; Hu, C.; Guo, H.; Chen, P.; Xie, P.; et al. Carbon Storage Patterns of Caragana Korshinskii in Areas of Reduced Environmental Moisture on the Loess Plateau, China. Sci. Rep. 2016, 6, 28883. [Google Scholar] [CrossRef]
- Li, G.; Yu, Z.; Li, Y.; Li, Z.; Ju, Q.; Huang, Y. The Evolution of Precipitation and Its Physical Mechanisms in Arid and Humid Regions of the Tibetan Plateau. Atmos. Res. 2023, 285, 106638. [Google Scholar] [CrossRef]
- Chaudhary, S.; Aryal, B. Factors Affecting the Tree and Soil Carbon Stock in Shorea Robusta Gaertn. Forests along the Elevational Gradient in Eastern Nepal. Ecol. Front. 2024, 44, 517–528. [Google Scholar] [CrossRef]
- Gebrewahid, Y.; Gebre-Egziabhier, T.-B.; Teka, K.; Birhane, E. Carbon Stock Potential of Scattered Trees on Farmland along an Altitudinal Gradient in Tigray, Northern Ethiopia. Ecol. Process. 2018, 7, 40. [Google Scholar] [CrossRef]
- De La Cruz-Amo, L.; Bañares-de-Dios, G.; Cala, V.; Granzow-de La Cerda, Í.; Espinosa, C.I.; Ledo, A.; Salinas, N.; Macía, M.J.; Cayuela, L. Trade-Offs Among Aboveground, Belowground, and Soil Organic Carbon Stocks Along Altitudinal Gradients in Andean Tropical Montane Forests. Front. Plant Sci. 2020, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Schawe, M.; Glatzel, S.; Gerold, G. Soil Development along an Altitudinal Transect in a Bolivian Tropical Montane Rainforest: Podzolization vs. Hydromorphy. CATENA 2007, 69, 83–90. [Google Scholar] [CrossRef]
- Akhtar, N.; Tsuyuzaki, S. Effects of Disturbances on the Spatiotemporal Patterns and Dynamics of Coastal Wetland Vegetation. Ecol. Indic. 2024, 166, 112430. [Google Scholar] [CrossRef]
- Gong, J.; Xu, C.; Yan, L.; Zhu, Y.; Zhang, Y.; Jin, T. Multi-Scale Analysis of Ecosystem Services Trade-Offs in an Ecotone in the Eastern Margin of the Qinghai-Tibetan Plateau. J. Mt. Sci. 2021, 18, 2803–2819. [Google Scholar] [CrossRef]
- Wang, J.; Guan, Y.; Wang, H.; Zhang, H.; Zhou, W. Evaluation of Farmland Production Potential in Key Agricultural Production Areas on the Qinghai-Tibet Plateau under Multi-Scenario Simulation. Sci. Total Environ. 2024, 951, 175741. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Arrouays, D.; Angers, D.A.; Chenu, C.; Barré, P.; Martin, M.P.; Saby, N.P.A.; Walter, C. National Estimation of Soil Organic Carbon Storage Potential for Arable Soils: A Data-Driven Approach Coupled with Carbon-Landscape Zones. Sci. Total Environ. 2019, 666, 355–367. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, D.; Wang, X.; Hong, J.; Wu, J.; Xiong, D.; Liang, Y.; Yuan, Z.; Qi, Y.; Huang, L. Three Decadal Large-scale Ecological Restoration Projects across the Tibetan Plateau. Land Degrad. Dev. 2024, 35, 22–32. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Q.; Yu, M. Quantifying Trends of Land Change in Qinghai-Tibet Plateau during 2001–2015. Remote Sens. 2019, 11, 2435. [Google Scholar] [CrossRef]
- Kong, J.; Yang, R.; Sun, Y.; Fu, Z. Effect of Land Use and Cover Change on Carbon Stock Dynamics in a Typical Desert Oasis. Acta Ecol. Sin. 2018, 38, 7801–7812. [Google Scholar]
- Hou, J.; Chen, J.; Zhang, K.; Zhou, G.; You, H.; Han, X. Temporal and Spatial Variation Characteristics of Carbon Storage in the Source Region of the Yellow River Based on InVEST and GeoSoS-FLUS Models and Its Response to Different Future Scenarios. Environ. Sci. 2022, 43, 5253–5262. [Google Scholar]
- Wang, W.; Zhang, Z.; Ding, J.; Liu, X.; Sun, H.; Li, G.; Deng, C. Spatio-Temporal Variation and Future Multi-Scenario Simulation of Carbon Storage in Bailong River Basin Using GeoSOS-FLUS and InVEST Models. 2023. Available online: https://www.researchsquare.com/article/rs-3138310/v1 (accessed on 15 November 2024).
Dataset | Data | Year | Attribute/Spatial Resolution | Data Resources |
---|---|---|---|---|
Land use datasets | Land use data | 2000, 2010, 2020 | TIFF/30 m | Globeland30 (http://globeland30.org/ (accessed on 20 November 2024)) |
Socio-economic data | Administrative boundaries | 2022 | SHP | National Catalogue Service for Geographic Information (https://www.webmap.cn/ (accessed on 20 November 2024)) |
Road network data | 2020 | |||
River network data | 2022 | |||
GDP | 2020 | TIFF/1 km | Resource and Environmental Science Data Platform (https://www.resdc.cn/Default.aspx (accessed on 20 November 2024)) | |
Population density | 2019 | |||
Climatic environmental data | DEM | 2020 | TIFF/30 m | |
Slope | ||||
Aspect | ||||
Average annual precipitation | 2019 | TIFF/1 km | ||
Average annual temperature | 2019 |
Land Use Type | Cabove | Cbelow | Csoil | Cdead |
---|---|---|---|---|
Arable land | 0.456 | 0.745 | 1.84 | 0 |
Woodland | 4.072 | 1.32 | 4.69 | 0.652 |
Grassland | 0.086 | 0.538 | 1.79 | 0.129 |
Water | 0 | 0 | 0 | 0 |
Construction land | 0 | 0 | 3.35 | 0 |
Other | 0.063 | 0.495 | 1.22 | 0 |
ND | ALP | EP | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F |
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
D | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
E | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
F | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Rank | DEM/m | Slope/° | Landform Relief | Terrain Niche |
---|---|---|---|---|
I | 566–1415 | 0–12.24 | 0–388 | 0.22–1.00 |
II | 1415–1704 | 12.24–17.29 | 388–507 | 1.00–1.13 |
III | 1704–1914 | 17.29–21.01 | 507–590 | 1.13–1.22 |
IV | 1914–2110 | 21.01–24.21 | 590–651 | 1.22–1.30 |
V | 2110–2316 | 24.21–26.87 | 651–710 | 1.30–1.38 |
VI | 2316–2525 | 26.87–29.53 | 710–770 | 1.38–1.44 |
VII | 2525–2748 | 29.53–32.19 | 770–831 | 1.44–1.52 |
IX | 2748–3018 | 32.19–35.11 | 831–905 | 1.52–1.59 |
X | 3018–3362 | 35.11–39.10 | 905–1014 | 1.59–1.69 |
Ⅹ | 3362–4831 | 39.10–67.83 | 1014–1573 | 1.69–2.30 |
Vegetation CS (tons) | Soil CS (tons) | Total CS (tons) | |||||||
---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2000 | 2010 | 2020 | 2000 | 2010 | 2020 | |
Arable land | 481.95 | 488.32 | 481.93 | 738.37 | 748.13 | 738.34 | 1220.32 | 1236.45 | 1220.26 |
Woodland | 8087.01 | 8490.72 | 8472.43 | 8012.02 | 8411.98 | 8393.87 | 16,099.03 | 16,902.70 | 16,866.30 |
Grassland | 99.62 | 48.34 | 48.32 | 306.37 | 148.66 | 148.61 | 405.99 | 196.99 | 196.93 |
Water | — | — | — | — | — | — | — | — | — |
Construction land | — | — | — | 13.42 | 16.33 | 40.25 | 13.42 | 16.33 | 40.25 |
Other | 0.18 | 0.29 | 0.01 | 0.40 | 0.63 | 0.02 | 0.58 | 0.92 | 0.02 |
Total | 8668.76 | 9027.66 | 9002.69 | 9070.58 | 9325.73 | 9321.08 | 17,739.34 | 18,353.39 | 18,323.77 |
Land Use Type | Vegetation C (tons) | Soil CS (tons) | Total CS (tons) | Change in Area (km2) | Change in Area (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Transfer Out | Transfer to | Increase | Decrease | Increase | Decrease | Increase | Decrease | ||
Arable land | Woodland | 157.30 | — | — | 188.24 | — | 345.54 | 449.13 | 82.31 |
Grassland | 0.24 | — | 1.76 | — | 1.52 | — | 30.48 | ||
Water | — | 2.04 | 1.33 | — | 3.37 | — | 11.08 | ||
Construction land | 8.30 | — | 6.60 | — | — | 1.70 | 54.97 | ||
Other | 0.00 | — | 0.00 | — | 0.00 | — | 0.01 | ||
545.66 | |||||||||
Woodland | Arable land | — | 106.25 | 127.16 | — | 233.41 | — | 303.38 | 72.39 |
Grassland | — | 31.75 | 44.23 | — | 75.98 | — | 92.76 | ||
Water | — | 9.03 | 9.12 | — | 18.15 | — | 16.91 | ||
Construction land | 1.19 | 0.0119 | 3.23 | — | 4.42 | — | 5.99 | ||
Other | 0.03 | 0.0003 | 0.04 | — | 0.07 | — | 0.08 | ||
419.12 | |||||||||
Grassland | Arable land | 1.82 | — | 13.30 | — | 11.48 | 230.44 | 24.36 | |
Woodland | 231.87 | — | — | 322.98 | — | 554.85 | 677.33 | 71.61 | |
Water | — | 2.39 | 0.78 | — | 3.16 | — | 12.43 | ||
Construction land | 3.67 | — | 1.60 | — | — | 2.07 | 25.67 | ||
Other | 0.00 | — | 0.00 | — | 0.00 | 0.04 | |||
945.91 | |||||||||
Water | Arable land | 0.77 | — | — | 0.50 | — | 1.27 | 4.18 | 37.46 |
Woodland | 2.48 | — | — | 2.50 | — | 4.98 | 4.64 | 41.58 | |
Grassland | 0.14 | — | — | 0.05 | — | 0.19 | 0.75 | ||
Construction land | 0.53 | — | 0.00 | — | — | 00.53 | 1.59 | ||
11.16 | |||||||||
Construction land | Arable land | — | 1.17 | -— | 0.93 | 0.24 | — | 7.75 | 82.45 |
Woodland | 0.30 | — | — | 0.81 | — | 1.11 | 1.501 | 15.97 | |
Grassland | 0.00 | — | 0.00 | — | 0.00 | — | 0.02 | ||
Water | — | 0.04 | 0.00 | — | 0.04 | — | 0.12 | ||
9.40 | |||||||||
Other | Arable land | 0.01 | — | — | 0.01 | — | 0.01 | 0.09 | |
Woodland | 0.09 | — | — | 0.11 | — | 0.0020 | 0.22 | ||
Grassland | 0.02 | — | 0.00 | — | — | 0.0002 | 0.22 | ||
Water | — | 00.18 | 0.0008 | — | 0.0026 | — | 1.45 | 73.23 | |
Total | 404.5 | 154.68 | 195.85 | 529.43 | 340.36 | 923.73 | 1.98 | ||
Sum | 249.8178 | −333.5792 | −583.3696 | 1933.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhang, Z.; Wang, Y.; Ding, J.; Li, G.; Sun, H.; Deng, C. Multi-Scenario Prediction of Dynamic Responses of the Carbon Sink Potential in Land Use/Land Cover Change in Areas with Steep Slopes. Appl. Sci. 2025, 15, 1319. https://doi.org/10.3390/app15031319
Wang W, Zhang Z, Wang Y, Ding J, Li G, Sun H, Deng C. Multi-Scenario Prediction of Dynamic Responses of the Carbon Sink Potential in Land Use/Land Cover Change in Areas with Steep Slopes. Applied Sciences. 2025; 15(3):1319. https://doi.org/10.3390/app15031319
Chicago/Turabian StyleWang, Wanli, Zhen Zhang, Yangyang Wang, Jing Ding, Guolong Li, Heling Sun, and Chao Deng. 2025. "Multi-Scenario Prediction of Dynamic Responses of the Carbon Sink Potential in Land Use/Land Cover Change in Areas with Steep Slopes" Applied Sciences 15, no. 3: 1319. https://doi.org/10.3390/app15031319
APA StyleWang, W., Zhang, Z., Wang, Y., Ding, J., Li, G., Sun, H., & Deng, C. (2025). Multi-Scenario Prediction of Dynamic Responses of the Carbon Sink Potential in Land Use/Land Cover Change in Areas with Steep Slopes. Applied Sciences, 15(3), 1319. https://doi.org/10.3390/app15031319