Effluent from Winery Waste Biorefinery: A Strategic Input for Biomass Generation with Different Objectives to Add Value in Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Starting Materials
2.2. Exploratory Preliminary Study
2.3. Experimental Design of Field Assay
2.4. Analisys Methodology
2.4.1. Effluent Analysis
2.4.2. Soil Analysis
2.4.3. Vegetal Biomass Analysis
2.5. Statistical Analysis
3. Results
3.1. Preliminary Results
3.2. Characteristics of Effluent Used in the Demonstration Plot for Biomass Generation
3.3. Effects of Cultivation and Effluent Use on Soil Properties
3.4. Biomass Generation from Mixed Grassland and Sorghum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez, Ó.J.; Ospina, D.A.; Montoya, S. Compost supplementation with nutrients and microorganisms in composting process. Waste Manag. 2017, 69, 136–153. [Google Scholar] [CrossRef]
- Laca, A.; Gancedo, S.; Laca, A.; Díaz, M. Assessment of the environmental impacts associated with vineyards and winemaking. A case study in mountain areas. Environ. Sci. Pollut. Res. 2021, 28, 1204–1223. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Vitivinicultura (INV). Informe Anual de Superficie. 2023. Available online: https://www.argentina.gob.ar/inv/vinos/estadisticas/superficie/anuarios (accessed on 17 October 2024).
- Kontogiannopoulos, K.N.; Patsios, S.I.; Karabelas, A.J. Tartaric acid recovery from winerylees using cation exchange resin: Optimization by response surface methodology. Sep. Purif. Technol. 2016, 165, 32–41. [Google Scholar] [CrossRef]
- Spigno, G.; Marinoni, L.; Garrido, G.D. State of the art in grape processing by-products. In Handbook of Grape Processing by-Products; Galanakis, C.M., Ed.; Academic Press: Vienna, Austria, 2017; Volume 1, pp. 1–27. [Google Scholar]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef]
- Pinter, I.F.; Fernández, A.S.; Martínez, L.E.; Riera, N.; Fernández, M.; Aguado, G.D.; Uliarte, E.M. Exhausted grape marc and organic residues composting with polyethylene cover: Process and quality evaluation as plant substrate. J. Environ. Manag. 2019, 246, 695–705. [Google Scholar] [CrossRef] [PubMed]
- DGI Resolution 778/96; General Regulation for the Control of Water Pollution. Protection of the Quality of Public Domain Waters. General Directorate of Irrigation: Mendoza, Argentina, 1996.
- Subsecretariat of Environment of the Province of Mendoza. Soil Map of the Province of Mendoza, Argentina. Available online: https://www.mendoza.gov.ar/ambiente/siat/mapas-siat/ (accessed on 20 October 2024).
- Bautista, E.; Schlegel, J.L.; Strelkoff, T.S. WinSRFR 4.1-User Manual; USDA-ARS Arid Land Agricultural Research Center: Maricopa, AZ, USA, 2012. [Google Scholar]
- APHA. Standard Methods for Examination of Water and Wastewater, 18th ed.; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- INTA. Compendium of Analytical Methods for the Characterization of Agricultural and Agro-Industrial Waste, Compost and Effluents, 1st ed.; Martinez, L., Rizzo, P.F., Bres, P.A., Riera, N.I., Beily, M.E., Young, B.J., INTA, Eds.; INTA: Buenos Aires, Argentina, 2021; pp. 1–166. (In Spanish) [Google Scholar]
- SAMLA. Compilation of Laboratory Techniques. Methodological Support System for Laboratories of Soil, Water, Vegetable and Organic Amendment Analysis (SAMLA); Secretariat of Agriculture, Livestock, Fishing and Foods: Buenos Aires, Argentina, 2004. (In Spanish) [Google Scholar]
- Nijenshon, L.; Maffei, J. Estimación de la salinidad y otras características edáficas a través de los volúmenes de sedimentación. Cienc. Suelo 1996, 14, 119–121. [Google Scholar]
- Jeong, H.; Kim, H.; Jang, T. Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution toward Sustainable Wastewater Reuse in South Korea. Water 2016, 8, 169. [Google Scholar] [CrossRef]
- Buelow, M.C.; Steenwerth, K.; Silva, L.C.; Parikh, S.J. Characterization of winery wastewater for reuse in California. Am. J. Enol. Vitic. 2015, 66, 302–310. [Google Scholar] [CrossRef]
- Livia, S.; María, M.S.; Marco, B.; Marco, R. Assessment of wastewater reuse potential for irrigation in rural semi-arid areas: The case study of Punitaqui, Chile. Clean Technol. Environ. Policy 2020, 22, 1325–1338. [Google Scholar] [CrossRef]
- Moran-Salazar, R.G.; Sanchez-Lizarraga, A.L.; Rodriguez-Campos, J.; Davila-Vazquez, G.; Marino-Marmolejo, E.N.; Dendooven, L.; Contreras-Ramos, S.M. Utilization of vinasses as soil amendment: Consequences and perspectives. SpringerPlus 2016, 5, 1007. [Google Scholar] [CrossRef] [PubMed]
- Khaskhoussy, K.; Kahlaoui, B.; Misle, E.; Hachicha, M. Impact of Irrigation with Treated Wastewater on Physical-Chemical Properties of Two Soil Types and Corn Plant (Zea mays). J. Soil Sci. Plant Nutr. 2022, 22, 1377–1393. [Google Scholar] [CrossRef]
- Cavalcante, T.J.; Castoldi, G.; Rodrigues, C.R.; Nogueira, M.M.; Albert, A.M. Macro and micronutrients uptake in biomass sorghum. Pesqui. Agropecuária Trop. 2018, 48, 364–373. [Google Scholar] [CrossRef]
- Mosse KP, M.; Patti, A.F.; Smernik, R.J.; Christen, E.W.; Cavagnaro, T.R. Physicochemical and microbiological effects of long-and short-term winery wastewater application to soils. J. Hazard. Mater. 2012, 201, 219–228. [Google Scholar] [CrossRef] [PubMed]
Parameter | EGM 2 | V 3 |
---|---|---|
pH | 4.32 | 5.99 |
EC 1 (dS/m) | 13.57 | 17.88 |
Deep (m) | EC 1 (dS/m) | pH | SV 2 (g/100 g Soil) | Textural Qualification |
---|---|---|---|---|
0–0.30 | 3.65 | 7.58 | 102 | loam |
0.30–0.60 | 3.08 | 7.76 | 92 | sandy loam |
0.60–0.90 | 3.23 | 7.81 | 94 | loam |
Parameter 1 | Effluent |
---|---|
pH | 6.35 |
EC (dS/m) | 2.82 |
CO32− (meq/L) | 0.00 |
HCO3− (meq/L) | 31.68 |
Cl− (meq/L) | 5.22 |
SO42− (meq/L) | 13.55 |
Na (meq/L) | 3.98 |
K (meq/L) | 20.97 |
Ca (meq/L) | 22.10 |
Mg (meq/L) | 3.40 |
SAR | 1.11 |
Parameter 1 | Soil Depth (0–0.30 m) | Soil Depth (0.30–0.60 m) | Soil Depth (0.60–0.90 m) |
---|---|---|---|
pH | 7.58 | 7.76 | 7.81 |
EC (dS/m) | 3.65 | 3.08 | 3.23 |
SV (g/100 g soil) | 102 | 92 | 94 |
CO32− (meq/L) | 0.00 | 1.00 | 2.00 |
HCO3− (meq/L) | 2.94 | 3.65 | 3.57 |
Cl− (meq/L) | 5.54 | 3.02 | 3.02 |
SO42− (meq/L) | 31.81 | 28.28 | 29.56 |
Na (meq/L) | 8.63 | 5.24 | 6.00 |
Ext-K (mg/kg) | 1874 | 1286 | 2510 |
Ca (meq/L) | 25.30 | 25.05 | 24.35 |
Mg (meq/L) | 6.35 | 4.65 | 5.80 |
TN (mg/kg) | 2490 | 838 | 468 |
P available (mg/kg) | 21 | 5 | 1 |
OM (%) | 2.74 | 0.89 | 0.74 |
Parameter 1 | Control (0–0.30 m) | Pasture (0–0.30 m) | Sorghum (0–0.30 m) |
---|---|---|---|
pH | 7.57 ± 0.16 | 7.28 ± 0.07 | 7.37 ± 0.19 |
EC (dS/m) | 9.11 ± 5.16 | 5.67 ± 0.90 | 10.21 ± 6.00 |
SV (g/100 g soil) | 92.0 ± 2.0 | 116.00 ± 14.42 | 115.00 ± 17.01 |
CO32− (meq/L) | 0.26 ± 0.45 | 0.00 ± 0.00 | 0.00 ± 0.00 |
HCO3− (meq/L) | 3.53 ± 0.68 | 3.01 ± 0.30 | 3.72 ± 1.02 |
Cl⁻ (meq/L) | 50.63 ± 77.57 | 9.80 ± 0.98 | 27.05 ± 13.29 |
SO42− (meq/L) | 59.74 ± 20.96 | 65.49 ± 10.68 | 88.97 ± 52.79 |
Na (meq/L) | 36.70 ± 35.52 | 16.96 ± 4.54 | 38.79 ± 30.58 |
Ext-K (mg/kg) | 2447 ± 960 | 1647 ± 564 | 2781 ± 1054 |
Ca (meq/L) | 25.59 ± 2.10 a | 30.64 ± 0.58 ab | 34.34 ± 7.07 b |
Mg (meq/L) | 14.48 ± 8.82 | 6.73 ± 1.17 | 9.43 ± 4.55 |
TN (mg/kg) | 1132 ± 208 | 5427 ± 3012 | 5311 ± 2787 |
P available (mg/kg) | 6.00 ± 2.80 | 6.40 ± 1.30 | 6.80 ± 1.00 |
OM (%) | 1.30 ± 0.20 | 5.90 ± 3.30 | 4.60 ± 3.50 |
Parameter 1 | Control (0.30–0.60 m) | Pasture (0.30–0.60 m) | Sorghum (0.30–0.60 m) |
---|---|---|---|
pH | 7.62 ± 0.19 b | 7.35 ± 0.16 ab | 7.31 ± 0.07 a |
EC (dS/m) | 7.83 ± 1.68 | 4.67 ± 0.08 | 6.94 ± 2.40 |
SV (g/100 g soil) | 88.00 ± 4.00 a | 95.00 ± 1.15 ab | 109.00 ± 12.22 b |
CO32− (meq/L) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
HCO3− (meq/L) | 3.20 ± 0.11 | 3.53 ± 0.34 | 2.74 ± 1.04 |
Cl⁻ (meq/L) | 23.39 ± 29.21 | 6.86 ± 0.00 | 36.26 ± 32.09 |
SO42− (meq/L) | 74.34 ± 20.00 | 57.73 ± 5.59 | 50.21 ± 19.34 |
Na (meq/L) | 24.22 ± 9.23 | 12.13 ± 1.02 | 21.21 ± 10.17 |
Ext-K (mg/kg) | 38.67 ± 5.05 b | 17.28 ± 1.39 a | 29.62 ± 11.14 ab |
Ca (meq/L) | 24.91 ± 2.54 a | 29.29 ± 1.75 ab | 29.96 ± 2.54 b |
Mg (meq/L) | 13.13 ± 3.03 | 9.43 ± 4.98 | 8.42 ± 3.09 |
Treatments | Fresh Biomass (kg/m2) | Dry Biomass (kg/m2) | Dry Matter (%) | Height (cm) |
---|---|---|---|---|
Pasture | 1.96 ± 0.60 | 0.70 ± 0.20 | 33.9 ± 5.10 a | 97.7 ± 40.1 a |
Sorghum | 6.30 ± 3.3 | 3.30 ± 1.80 | 51.5 ± 1.50 b | 273.00 ± 26.70 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, P.F.; Aguado, G.D.; Funes-Pinter, I.; Martinez, L.E.; Ferrari, F.N.; De Biazi, F.; Martín, P.; Flores, G.; Sánchez, A.; Uliarte, E.M. Effluent from Winery Waste Biorefinery: A Strategic Input for Biomass Generation with Different Objectives to Add Value in Arid Regions. Appl. Sci. 2025, 15, 1435. https://doi.org/10.3390/app15031435
Rizzo PF, Aguado GD, Funes-Pinter I, Martinez LE, Ferrari FN, De Biazi F, Martín P, Flores G, Sánchez A, Uliarte EM. Effluent from Winery Waste Biorefinery: A Strategic Input for Biomass Generation with Different Objectives to Add Value in Arid Regions. Applied Sciences. 2025; 15(3):1435. https://doi.org/10.3390/app15031435
Chicago/Turabian StyleRizzo, Pedro Federico, Germán Darío Aguado, Iván Funes-Pinter, Laura Elizabeth Martinez, Florencia Noemí Ferrari, Federico De Biazi, Pablo Martín, Gustavo Flores, Antoni Sánchez, and Ernesto Martin Uliarte. 2025. "Effluent from Winery Waste Biorefinery: A Strategic Input for Biomass Generation with Different Objectives to Add Value in Arid Regions" Applied Sciences 15, no. 3: 1435. https://doi.org/10.3390/app15031435
APA StyleRizzo, P. F., Aguado, G. D., Funes-Pinter, I., Martinez, L. E., Ferrari, F. N., De Biazi, F., Martín, P., Flores, G., Sánchez, A., & Uliarte, E. M. (2025). Effluent from Winery Waste Biorefinery: A Strategic Input for Biomass Generation with Different Objectives to Add Value in Arid Regions. Applied Sciences, 15(3), 1435. https://doi.org/10.3390/app15031435