Diversity of Bacterial Communities in Horse Bean Plantations Soils with Various Cultivation Technologies
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Weather Conditions
2.3. Soil Sample Collection
- Plantless, fallow buffer zone of the field experiment—sample “0” (FA);
- Conventional tillage (CT);
- Reduced tillage (RT);
- Strip tillage (ST);
- No tillage (NT).
Chemical and Physical Analyses of Soil
2.4. DNA Extraction and Next Generation Sequencing (NGS)
2.5. Bioinformatics and Statistical Analyses
3. Results and Discussion
3.1. Dominant Phyla of Soil Bacteria Under Horse Beans Cultivated in Different Systems
3.2. Dominant Classes and Orders of Soil Bacteria Under Horse Beans Cultivated in Different Systems
3.3. Dominant Bacterial Species in Different Soil Cultivation Technologies Under Horse Bean Plantation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Sanderman, J.; Hengl, T.; Fiske, G.J. Soil carbon debt of 12 000 years of human land use. Proc. Natl. Acad. Sci. USA 2017, 114, 9575–9580. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.; Hati, K.M.; Dalal, R.C.; Dang, Y.P.; Kopittke, P.M.; McKenna, B.A.; Menzies, N.W. Effect of 50 Years of No-Tillage, Stubble Retention, and Nitrogen Fertilization on Soil Respiration, Easily Extractable Glomalin, and Nitrogen Mineralization. Agronomy 2022, 12, 151. [Google Scholar] [CrossRef]
- Swędrzyńska, D.; Grześ, S. Microbiological parameters of soil under sugar beet as a response to the long-term application of different tillage systems. Pol. J. Environ. Stud. 2015, 24, 285–294. [Google Scholar] [CrossRef]
- Schlatter, D.C.; Kahl, K.; Carlson, B.; Huggins, D.R.; Paulitz, T. Soil acidification modifies soil depth-microbiome relationships in a no-till wheat cropping system. Soil Biol. Biochem. 2020, 149, 107939. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. No-till technology has limited potential to store carbon: How can we enhance such potential? Agric. Ecosyst. Environ. 2021, 313, 107352. [Google Scholar] [CrossRef]
- Liu, W.X.; Wei, Y.X.; Li, R.C.; Chen, Z.; Wang, H.D.; Virk, A.L.; Lal, R.; Zhao, X.; Zhang, H.L. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Sci. Total Environ. 2022, 847, 157518. [Google Scholar] [CrossRef]
- Cordeau, S.; Baudron, A.; Adeux, G. Is Tillage a Suitable Option for Weed Management in Conservation Agriculture? Agronomy 2020, 10, 1746. [Google Scholar] [CrossRef]
- Kubiak, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarska, A.A. The Problem of Weed Infestation of Agricultural Plantations vs. the Assumptions of the European Biodiversity Strategy. Agronomy 2022, 12, 1808. [Google Scholar] [CrossRef]
- Małecka-Jankowiak, I.; Blecharczyk, A.; Swedrzynska, D.; Sawinska, Z.; Piechota, T. The effect of long-term tillage systems on some soil properties and yield of pea (Pisum sativum L.). Acta Sci. Polonorum. Agric. 2016, 15, 37–50. [Google Scholar]
- Swędrzyńska, D.; Małecka-Jankowiak, I. The Impact of Tillaging Spring Barley on Selected Chemical, Microbiological, and Enzymatic Soil Properties. Pol. J. Environ. Stud. 2017, 26, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, D.A.; Ivanova, E.A.; Zhelezova, A.D.; Semenov, M.V.; Gadzhiumarov, R.G.; Tkhakakhova, A.K.; Chernov, T.I.; Ksenofontova, N.A.; Kutovaya, O.V. Assessment of the impact of no-till and conventional tillage technologies on the microbiome of southern agrochernozems. Eurasian Soil Sci. 2020, 53, 1782–1793. [Google Scholar] [CrossRef]
- Wieczorek, R.; Zydlik, Z.; Wolna-Maruwka, A.; Niewiadomska, A.; Kayzer, D. The Effect of Biofumigation on the Microbiome Composition in Replanted Soil in a Fruit Tree Nursery. Agronomy 2023, 13, 2507. [Google Scholar] [CrossRef]
- Kabala, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jankowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th edition—Principles, classification scheme and correlations. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soil and Creating Legends for Soils and creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Kabala, C. Luvisols and related clay-illuvial soils (gleby płowe)–soils of the year 2023. Current view of their origin, classification and services in Poland. Soil Sci. Annu. 2023, 74, 1016. [Google Scholar] [CrossRef]
- Selyaninov, G.T. About climate agricultural estimation. Proc. Agric. Meteorol. 1928, 20, 165–177. [Google Scholar]
- Taparauskiene, L.; Miseckaite, O. Comparison of watermark soil moisture content with Selyaninov hydrothermal coefficient. Agrofor 2017, 2, 106–115. [Google Scholar] [CrossRef]
- Chmist-Sikorska, J.; Kępińska-Kasprzak, M.; Struzik, P. Agricultural drought assessment on the base of Hydro-thermal Coefficient of Selyaninov in Poland. Ital. J. Agrometeorol. 2022, 1, 3–12. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; ISRIC: Wageningen, The Netherlands, 2002. [Google Scholar]
- Klute, A. Water retention: Laboratory methods. In Methods of Soil Analysis Part 1 Physical and Mineralogical Methods; Klute, A., Ed.; ASA and SSSA: Madison WI, USA, 1986; pp. 635–662. [Google Scholar]
- A&A Biotechnology Genomic Mini AX Soil Spin: Increased Efficiency Kit for Genomic DNA Purification from Soil; Version 2023-1; A&A Biotechnology: Gdansk, Poland, 2023; p. 8.
- Soliman, T.; Yang, S.Y.; Yamazaki, T.; Jenke-Kodama, H. Profiling soil microbial communities with next-generation sequencing: The influence of DNA kit selection and technician technical expertise. Peer J. 2017, 5, e4178. [Google Scholar] [CrossRef]
- Illumina Inc. 16S metagenomic sequencing library preparation. 2013. Available online: https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf (accessed on 21 January 2025).
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [PubMed]
- Kozak, M.; Bocianowski, J.; Sawkojć, S.; Wnuk, A. Call for more graphical elements in statistical teaching and consultancy. Biom. Lett. 2010, 47, 57–68. [Google Scholar]
- VSN International Genstat for Windows, 23rd ed.; VSN International: Hemel Hempstead, UK, 2023.
- Hansen, F.A.; James, D.K.; Anderson, J.P.; Meredith, C.S.; Dominguez, A.J.; Pombubpa, N.; Stajich, J.E.; Romero-Olivares, A.L.; Salley, S.W.; Pietrasiak, N. Landscape characteristics shape surface soil microbiomes in the Chihuahuan Desert. Front. Microbiol. 2023, 14, 1135800. [Google Scholar] [CrossRef] [PubMed]
- Nacke, H.; Thürmer, A.; Wollherr, A.; Will, C.; Hodac, L.; Herold, N.; Schöning, I.; Schrumpf, M.; Danie, R. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 2011, 6, e17000. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Noya, Y.E.; Gómez-Acata, S.; Montoya-Ciriaco, N.; Rojas-Valdez, A.; Suárez-Arriaga, M.C.; Valenzuela-Encinas, C.; Jiménez-Bueno, N.; Verhulst, N.; Govaerts, B.; Dendooven, L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 2013, 65, 86–95. [Google Scholar] [CrossRef]
- Niewiadomska, A.; Majchrzak, L.; Borowiak, K.; Wolna-Maruwka, A.; Waraczewska, Z.; Budka, A.; Gaj, R. The influence of tillage and cover cropping on soil microbial parameters and spring wheat physiology. Agronomy 2020, 10, 200. [Google Scholar] [CrossRef]
- Bao, Y.-Y.; Feng, Y.-Z.; Stegen, J.C.; Wu, M.; Chen, R.-R.; Liu, W.-J.; Zhang, J.-W.; Li, Z.-P.; Lin, X.-G. Straw chemistry links the assembly of bacterial communities to decomposition in paddy soils. Soil Biol. Biochem. 2020, 148, 107866. [Google Scholar] [CrossRef]
- Liu, Y.R.; Delgado-Baquerizo, M.; Wang, J.T.; Hu, H.W.; Yang, Z.M.; He, J.Z. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 2018, 118, 35–41. [Google Scholar] [CrossRef]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Mahnkopp-Dirks, F.; Radl, V.; Kublik, S.; Gschwendtner, S.; Schloter, M.; Winkelmann, T. Dynamics of bacterial root endophytes of Malus domestica plants grown in field soils affected by apple replant disease. Front. Microbiol. 2022, 13, 841558. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, L.; He, N.; Gong, D.; Gao, H.; Ma, Z.; Fu, L.; Zhao, M.; Wang, H.; Wang, C.; et al. Soil bacterial community as impacted by addition of rice straw and 649 biochar. Sci. Rep. 2021, 11, 22185. [Google Scholar] [CrossRef]
- Bünger, W.; Jiang, X.; Müller, J.; Hurek, T.; Reinhold-Hurek, B. Novel cultivated endophytic Verrucomicrobia reveal deep-rooting traits of bacteria to associate with plants. Sci. Rep. 2020, 10, 8692. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef] [PubMed]
- DeBruyn, J.M.; Nixon, L.T.; Fawaz, M.N.; Johnson, A.M.; Radosevich, M. Global Biogeography and Quantitative Seasonal Dynamics of Gemmatimonadetes in Soil. Appl. Environ. Microbiol. 2011, 77, 6295–6300. [Google Scholar] [CrossRef]
- Mujakić, I.; Piwosz, K.; Koblížek, M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022, 10, 151. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Zhu, R.; Chen, N.; Ding, L.; Chen, C. Vegetation richness, species identity and soil nutrients drive the shifts in soil bacterial communities during restoration process. Environ. Microbiol. Rep. 2021, 13, 1758–2229. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Bai, X.; Zhou, Y.; Zhu, W.; Yin, Y. Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area. Sci. Total Environ. 2020, 704, 135243. [Google Scholar] [CrossRef]
- Ye, W.; Liu, X.; Lin, S.; Tan, J.; Pan, J.; Li, D.; Yang, H. The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiol. Ecol. 2009, 70, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tang, X.; Hou, Q.; Li, T.; Xie, H.; Lu, Z.; Wen, X. Response of soil organic carbon fractions to legume incorporation into cropping system and the factors affecting it: A global meta-analysis. Agric. Ecosyst. Environ. 2023, 342, 108231. [Google Scholar] [CrossRef]
- Lee, S.A.; Kim, J.M.; Kim, Y.; Joa, J.H.; Kang, S.S.; Ahn, J.H.; Kim, M.; Song, J.; Weon, H.Y. Different types of agricultural land use drive distinct soil bacterial communities. Sci. Rep. 2020, 10, 17418. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; He, P.; Guo, X.L.; Zhang, X.; Li, L.J. Fifteen-year no tillage of a Mollisol with residue retention indirectly affects topsoil bacterial community by altering soil properties. Soil Tillage Res. 2021, 205, 104804. [Google Scholar] [CrossRef]
- Khmelevtsova, L.E.; Sazykin, I.S.; Azhogina, T.N.; Sazykina, M.A. Influence of agricultural practices on bacterial community of cultivated soils. Agriculture 2022, 12, 371. [Google Scholar] [CrossRef]
- Mitra, D.; Mondal, R.; Khoshru, B.; Senapati, A.; Radha, T.K.; Mahakur, B.; Uniyal, N.; Myo, E.M.; Boutaj, H.; Sierra, B.E.G.; et al. Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: Advances in soil, plant, and microbial multifactorial interactions. Pedosphere 2022, 32, 149–170. [Google Scholar] [CrossRef]
- Becker, A.; Overlöper, A.; Schlüter, J.P.; Reinkensmeier, J.; Robledo, M.; Giegerich, R.; Narberhaus, F.; Evguenieva-Hackenberg, E. Riboregulation in plant-associated α-proteobacteria. RNA Biology 2014, 11, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Klūga, A.; Dubova, L.; Alsiņa, I.; Rostoks, N. Alpha-, gamma-and beta-proteobacteria detected in legume nodules in Latvia, using full-length 16S rRNA gene sequencing. Acta Agric. Scand. Sect. B 2023, 73, 127–141. [Google Scholar] [CrossRef]
- Batut, J.; Andersson, S.G.; O’Callaghan, D. The evolution of chronic infection strategies in the α-proteobacteria. Nat. Rev. Microbiol. 2004, 2, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Anandan, R.; Dharumadurai, D.; Manogaran, G.P. An Introduction to Actinobacteria. In Actinobacteria-Basics and Biotechnological Applications; IntechOpen: London, UK, 2016. [Google Scholar]
- Mokni-Tlili, S.; Mehri, I.; Ghorbel, M.; Hassen, W.; Hassen, A.; Jedidi, N.; Hamdi, H. Community-level genetic profiles of actinomycetales in long-term biowaste-amended soils. Arch. Microbiol. 2020, 202, 2607–2617. [Google Scholar] [CrossRef]
- Mandic-Mulec, I.; Stefanic, P.; van Elsas, J.D. Ecology of Bacillaceae. In The Bacterial Spore: From Molecules to Systems; Wiley: Hoboken, NJ, USA, 2016; pp. 59–85. [Google Scholar] [CrossRef]
- Masson-Boivin, C.; Giraud, E.; Perret, X.; Batut, J. Establishing nitrogen-fixing symbiosis with legumes: How many rhizobium recipes? Trends Microbiol. 2009, 17, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pan, F.; Yao, H. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J. Soils Sediments 2019, 19, 1948–1958. [Google Scholar] [CrossRef]
- Anavadiya, B.; Chouhan, S.; Saraf, M.; Goswami, D. Exploring Endophytic Actinomycetes: A Rich Reservoir of Diverse Antimicrobial Compounds for Combatting Global Antimicrobial Resistance. The Microbe 2024, 4, 100110. [Google Scholar] [CrossRef]
- Platamone, G.; Procacci, S.; Maccioni, O.; Borromeo, I.; Rossi, M.; Bacchetta, L.; Forni, C. Arthrobacter sp. inoculation improves cactus pear growth, quality of fruits, and nutraceutical properties of cladodes. Curr. Microbiol. 2023, 80, 266. [Google Scholar] [CrossRef]
- Chhetri, G.; Kim, I.; Kang, M.; So, Y.; Kim, J.; Seo, T. An isolated Arthrobacter sp. enhances rice (Oryza sativa L.) plant growth. Microorganisms 2022, 10, 1187. [Google Scholar] [CrossRef] [PubMed]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Szulc, P.; Bocianowski, J.; Kruczek, A.; Szymańska, G.; Roszkiewicz, R. Response of two cultivar types of maize (Zea mays L.) expressed in protein content and its yield to varied soil resources of N and Mg and a form of nitrogen fertilizer. Pol. J. Environ. Stud. 2013, 22, 1845–1853. [Google Scholar]
- Bocianowski, J.; Szulc, P.; Waśkiewicz, A.; Nowosad, K.; Kobus-Cisowska, J. Ergosterol and Fusarium mycotoxins content in two maize cultivars under different forms of nitrogen fertilizers. J. Phytopathol. 2019, 167, 516–526. [Google Scholar] [CrossRef]
- Szulc, P.; Bocianowski, J.; Nowosad, K. Evaluation of the effect of nitrogen fertilizers on nitrogen use efficiency in grain maize. Maydica 2021, 66, M23. [Google Scholar]
- Park, D.; Kim, H.; Yoon, S. Nitrous oxide reduction by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27. Appl. Environ. Microbiol. 2017, 83, e00502-17. [Google Scholar] [CrossRef] [PubMed]
Period | Month | |||||||
---|---|---|---|---|---|---|---|---|
Apr | May | June | July | Aug | Sep | |||
1st ten days | 0.00 | 1.73 | 0.03 | 0.32 | 0.65 | 1.75 | ||
2nd ten days | 0.96 | 4.71 | 0.06 | 1.39 | 0.50 | 0.62 | ||
3rd ten days | 0.52 | 1.67 | 0.28 | 1.32 | 0.22 | 1.94 | ||
month | 0.45 | 2.56 | 0.13 | 1.05 | 0.44 | 1.47 | ||
>3.0 | 2.6–3.0 | 2.1–2.6 | 1.7–2.1 | 1.4–1.7 | 1.1–1.4 | 0.8–1.1 | 0.4–0.8 | <0.4 |
Extremely humid | Very humid | Humid | Quite humid | Optimum | Quite dry | Dry | Very dry | Extremely dry |
Parameter | Cultivation System | LSD0.05 | |||
---|---|---|---|---|---|
CT | RT | ST | NT | ||
SOC (g kg−1) | 7.62 | 9.02 | 9.66 | 10.64 | 0.73 |
Total N (g kg−1) | 0.93 | 1.02 | 1.17 | 1.1 | 0.07 |
C/N | 8.2 | 8.9 | 9.1 | 9.7 | 0.6 |
P (mg kg−1) | 208 | 198 | 200 | 199 | n.s. |
K (mg kg−1) | 141 | 182 | 188 | 196 | 17.5 |
Mg (mg kg−1) | 27.8 | 41.8 | 44.7 | 53.7 | 4.6 |
Cultivation System | Soil Moisture% | Bulk Density g cm−3 | Capillary Water Capacity% |
---|---|---|---|
0–20 cm | 0–20 cm | 0–20 cm | |
CT | 14.1 | 1.44 | 35.6 |
RT | 15.6 | 1.55 | 32.9 |
ST | |||
-row | 14.7 | 1.46 | 36.6 |
-inter-row | 15.9 | 1.57 | 30.6 |
NT | 16.4 | 1.60 | 31.6 |
LSD0.05 | 0.7 | 0.08 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swędrzyńska, D.; Bocianowski, J.; Wolna-Maruwka, A.; Swędrzyński, A.; Płaza, A.; Górski, R.; Wolko, Ł.; Niewiadomska, A. Diversity of Bacterial Communities in Horse Bean Plantations Soils with Various Cultivation Technologies. Appl. Sci. 2025, 15, 1468. https://doi.org/10.3390/app15031468
Swędrzyńska D, Bocianowski J, Wolna-Maruwka A, Swędrzyński A, Płaza A, Górski R, Wolko Ł, Niewiadomska A. Diversity of Bacterial Communities in Horse Bean Plantations Soils with Various Cultivation Technologies. Applied Sciences. 2025; 15(3):1468. https://doi.org/10.3390/app15031468
Chicago/Turabian StyleSwędrzyńska, Dorota, Jan Bocianowski, Agnieszka Wolna-Maruwka, Arkadiusz Swędrzyński, Anna Płaza, Rafał Górski, Łukasz Wolko, and Alicja Niewiadomska. 2025. "Diversity of Bacterial Communities in Horse Bean Plantations Soils with Various Cultivation Technologies" Applied Sciences 15, no. 3: 1468. https://doi.org/10.3390/app15031468
APA StyleSwędrzyńska, D., Bocianowski, J., Wolna-Maruwka, A., Swędrzyński, A., Płaza, A., Górski, R., Wolko, Ł., & Niewiadomska, A. (2025). Diversity of Bacterial Communities in Horse Bean Plantations Soils with Various Cultivation Technologies. Applied Sciences, 15(3), 1468. https://doi.org/10.3390/app15031468