Impact of Cross-Linking-Monomer Characteristics on Pore-Filling-Membrane Performance and Durability in Anion-Exchange Water Electrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Pore-Filling Membranes
2.2. Membrane Characterization
2.3. Fabrication of Porous Transport Layers
2.4. Single Cell Assembly and Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shaya, N.; Glöser-Chahoud, S. A review of life cycle assessment (LCA) studies for hydrogen production technologies through water electrolysis: Recent advances. Energies 2024, 17, 3968. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, F.; Zhang, Y.; Djire, A. Recent development in electrocatalysts for hydrogen production through water electrolysis. Int. J. Hydrogen Energy 2021, 46, 32284–32317. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Peng, X.; Satjaritanun, P.; Taie, Z.; Wiles, L.; Keane, A.; Capuano, C.; Zenyuk, I.V.; Danilovic, N. Insights into interfacial and bulk transport phenomena affecting proton exchange membrane water electrolyzer performance at ultra-low iridium loadings. Adv. Sci. 2021, 8, 2102950. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, M.; Hu, B.; Hu, X.; He, M.; Xin, J.; Niu, C.; Huang, Y.; Li, N.; Xu, Z.; et al. High chemical stability poly(oxindole biphenylene)/ZrO2 porous separator for alkaline water electrolysis. J. Membr. Sci. 2024, 700, 122658. [Google Scholar] [CrossRef]
- Park, E.-J.; Kim, C.; Lee, J.; Myeong, S.-W.; Lee, H.; Heo, S.; Jin, S.; Park, M.; Li, O.L.; Choi, S.M. Design of precursors and pH factors for enhancing the performance of nickel-based catalysts for anion exchange membrane water electrolysis. Electrochem. Commun. 2025, 170, 107851. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Z.; Ma, Y.; Su, X.; Zhao, X.; Zhu, A.; Zhang, Q. Ni/Fe based electrocatalyst for highly-efficient anion exchange membrane water electrolysis. J. Power Sources 2024, 591, 233819. [Google Scholar] [CrossRef]
- Yang, J.; Jang, M.J.; Zeng, X.; Park, Y.S.; Lee, J.; Choi, S.M.; Yin, Y. Non-precious electrocatalysts for oxygen evolution reaction in anion exchange membrane water electrolysis: A mini review. Electrochem. Commun. 2021, 131, 107118. [Google Scholar] [CrossRef]
- Park, S.; Park, J.E.; Na, G.; Choi, C.; Cho, Y.-H.; Sung, Y.-E. Low-cost and high-performance anion-exchange membrane water electrolysis stack using non-noble metal-based materials. ACS Appl. Energy Mater. 2023, 6, 8738–8748. [Google Scholar] [CrossRef]
- Park, J.E.; Na, G.; Yeom, K.; Park, S.; Sim, H.J.; Sung, Y.-E.; Choi, C. Pore-controlled carbon nanotube sheet anodes for proton/anion-exchange membrane water electrolyzers. Chem. Eng. J. 2023, 459, 141671. [Google Scholar] [CrossRef]
- Kang, S.Y.; Park, J.E.; Jang, G.Y.; Kim, O.-H.; Kwon, O.J.; Cho, Y.-H.; Sung, Y.-E. High-performance and durable water electrolysis using a highly conductive and stable anion-exchange membrane. Int. J. Hydrogen Energy 2022, 47, 9115–9126. [Google Scholar] [CrossRef]
- Li, D.; Motz, A.R.; Bae, C.; Fujimoto, C.; Yang, G.; Zhang, F.-Y.; Ayers, K.E.; Kim, Y.S. Durability of anion exchange membrane water electrolyzers. Energy Environ. Sci. 2021, 14, 3393–3419. [Google Scholar] [CrossRef]
- Liu, L.; Ma, H.; Khan, M.; Hsiao, B.S. Recent advances and challenges in anion exchange membranes development/application for water electrolysis: A Review. Membranes 2024, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Lavacchi, A.; Mustarelli, P.; Di Noto, V.; Elbaz, L.; Dekel, D.R.; Jaouen, F. What is next in anion-exchange membrane water electrolyzers? Bottlenecks, benefits, and future. ChemSusChem 2022, 15, e202200027. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Liu, L.; Liao, J.; Shen, Y.; Li, N. UV-crosslinking of polystyrene anion exchange membranes by azidated macromolecular crosslinker for alkaline fuel cells. J. Membr. Sci. 2017, 535, 322–330. [Google Scholar] [CrossRef]
- David, R.L. CRC Handbook of Chemistry and Physics, 84th ed.; American Chemical Society: Washington, DC, USA, 2003; p. 1586. [Google Scholar]
- Hugar, K.M.; Kostalik, H.A.; Coates, G.W. Imidazolium cations with exceptional alkaline stability: A systematic study of structure-stability relationships. J. Am. Chem. Soc. 2015, 137, 8730–8737. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S.; Tian, L.; Li, J.; Ma, W.; Wang, F.; Wang, Z.; Li, J.; Zhu, H. “Windmill” shaped branched anion-conducting poly(aryl piperidine) with extra molecular interaction sites as new anion exchange membranes. J. Power Sources 2023, 564, 232822. [Google Scholar] [CrossRef]
- Park, J.E.; Kang, S.Y.; Oh, S.-H.; Kim, J.K.; Lim, M.S.; Ahn, C.-Y.; Cho, Y.-H.; Sung, Y.-E. High-performance anion-exchange membrane water electrolysis. Electrochim. Acta 2019, 295, 99–106. [Google Scholar] [CrossRef]
- Park, J.-H.; Park, J.-S. KOH-doped porous polybenzimidazole membranes for solid alkaline fuel cells. Energies 2020, 13, 525. [Google Scholar] [CrossRef]
- Shin, M.-S.; Lim, S.; Park, J.-H.; Kim, H.-J.; Chae, S.; Park, J.-S. Thermally crosslinked and quaternized polybenzimidazole ionomer binders for solid alkaline fuel cells. Int. J. Hydrogen Energy 2020, 45, 11773–11783. [Google Scholar] [CrossRef]
- Chen, J.H.; Bin Yue, X.; Choo, Y.S.L.; Yu, Z.; Wang, X.H.; Gao, X.L.; Gao, W.T.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Tailoring the microphase separation structure of poly(crown ether) anion exchange membranes by introducing aliphatic chains. J. Power Sources 2023, 570, 233014. [Google Scholar] [CrossRef]
- Ran, J.; Wu, L.; Xu, T. Enhancement of hydroxide conduction by self-assembly in anion conductive comb-shaped copolymers. Polym. Chem. 2013, 4, 4612–4620. [Google Scholar] [CrossRef]
- Kim, S.; Yang, S.H.; Shin, S.H.; Cho, H.J.; Jang, J.K.; Kim, T.H.; Oh, S.-G.; Kim, T.-H.; Han, H.S.; Lee, J.Y. High-performance and durable anion-exchange membrane water electrolysers with high-molecular-weight polycarbazole-based anion-conducting polymer. Energy Environ. Sci. 2024, 17, 5399–5409. [Google Scholar] [CrossRef]
- Chen, N.; Paek, S.Y.; Lee, J.Y.; Park, J.H.; Lee, S.Y.; Lee, Y.M. High-performance anion exchange membrane water electrolyzers with a current density of 7.68 A cm−2 and a durability of 1000 hours. Energy Environ. Sci. 2021, 14, 6338–6348. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, H.; Xing, D.; Lu, W.; Shao, Z.; Yi, B. Preparation and characterization of PTFE based composite anion exchange membranes for alkaline fuel cells. J. Membr. Sci. 2012, 421–422, 311–317. [Google Scholar] [CrossRef]
- Song, H.-B.; Park, J.-H.; Park, J.-S.; Kang, M.-S. Pore-filled proton-exchange membranes with fluorinated moiety for fuel cell application. Energies 2021, 14, 4433. [Google Scholar] [CrossRef]
- Son, T.Y.; Kim, T.-H.; Nam, S.Y. Crosslinked Pore-filling anion exchange membrane using the cylindrical centrifugal force for anion exchange membrane fuel cell system. Polymers 2020, 12, 2758. [Google Scholar] [CrossRef]
- Jeong, D.; Park, J.-S. Effect of anion-conducting electrolytes in pore-filling membranes on performance and durability in water electrolysis. Membranes 2024, 14, 265. [Google Scholar] [CrossRef]
- Lee, M.; Park, J.-S. Enhanced performance and durability of pore-filling membranes for anion exchange membrane water electrolysis. Membranes 2024, 14, 269. [Google Scholar] [CrossRef]
- Khoiruddin; Ariono, D.; Subagjo; Wenten, I.G. Surface modification of ion-exchange membranes: Methods, characteristics, and performance. J. Appl. Polym. Sci. 2017, 134, 45540. [Google Scholar] [CrossRef]
- Mun, H.J.; Choi, J.H.; Hong, Y.T.; Chang, B.J. The preparation and electrochemical properties of pore-filled and polystyrene-based anion-exchange membranes using poly(ethylene glycol)methyl ether methacrylate. Membr. J. 2015, 25, 515–523. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Miyata, F.; Nakao, S.I. Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell. J. Membr. Sci. 2003, 214, 283–292. [Google Scholar] [CrossRef]
- Feng, Z.; Gupta, G.; Mamlouk, M. Robust poly(p-phenylene oxide) anion exchange membranes reinforced with pore-filling technique for water electrolysis. J. Appl. Polym. Sci. 2024, 141, e55340. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, H.; Xie, F.; Liu, Y.; Shao, Z.; Yi, B. High durability and hydroxide ion conducting pore-filled anion exchange membranes for alkaline fuel cell applications. J. Power Sources 2014, 269, 1–6. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Son, T.Y.; Nam, S.Y. Recent advances in composite polymer electrolyte membranes for fuel cell. Appl. Chem. Eng. 2019, 30, 1–10. [Google Scholar]
- Cha, J.-E.; Jang, S.; Seo, D.-J.; Hwang, J.; Seo, M.H.; Choi, Y.-W.; Kim, W.-B. A reinforced composite membrane of two-layered asymmetric structure with Nafion ionomer and polyethylene substrate for improving proton exchange membrane fuel cell performance. Chem. Eng. J. 2023, 454, 140091. [Google Scholar] [CrossRef]
- Jeon, H.; Kim, D. Simultaneous establishment of high conductivity and mechanical stability via pore-filling of porous PTFE substrate with poly(ethylene glycol) and ionic liquid for lithium secondary battery. J. Membr. Sci. 2021, 624, 119029. [Google Scholar] [CrossRef]
- Tan, X.; Rodrigue, D. A review on porous polymeric membrane preparation. Part II: Production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene. Polymers 2019, 11, 1310. [Google Scholar] [CrossRef]
- Hagesteijn, K.F.L.; Jiang, S.; Ladewig, B.P. A review of the synthesis and characterization of anion exchange membranes. J. Mater. Sci. 2018, 53, 11131–11150. [Google Scholar] [CrossRef]
- Pandey, A.K.; Goswami, A.; Sen, D.; Mazumder, S.; Childs, R.F. Formation and characterization of highly crosslinked anion-exchange membranes. J. Membr. Sci. 2003, 217, 117–130. [Google Scholar] [CrossRef]
- ASTM D882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018. Available online: https://www.astm.org/d0882-18.html (accessed on 29 January 2025).
- Xu, W.; Wang, W.; Hao, L.; Liu, H.; Hai, F.; Wang, X. Synthesis and properties of novel triazine-based fluorinated chain extender modified waterborne polyurethane hydrophobic films. Prog. Org. Coat. 2021, 157, 106282. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, J.; Peng, J.; Xu, L.; Li, J.; Zhai, M. Study on the chemical stability of the anion exchange membrane of grafting dimethylaminoethyl methacrylate. J. Membr. Sci. 2011, 376, 70–77. [Google Scholar] [CrossRef]
Code | Monomer | Structural Formula | 3D Model 1. | MW (g mol−1) |
---|---|---|---|---|
E3 | (Vinylbenzyl) trimethylammonium chloride | 211.73 | ||
C10 | 1,3,5-Triacryloylhexahydro-1,3,5-triazine | 249.27 | ||
C11 | Trimethylolpropane trimethacrylate | 338.40 |
Ionomer | Chemical Structure | IEC (meq g−1) | Major Bonds | Synthesis | |
---|---|---|---|---|---|
Theoretical | Experimental | ||||
E3-C10 | 2.20 | 1.57 ± 0.026 | C-N | UV irradiation | |
E3-C11 | 2.16 | 1.54 ± 0.038 | C-OC=O | UV irradiation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-H.; Park, Y.; Jeon, T.-S.; Seo, Y.; Park, J.-S. Impact of Cross-Linking-Monomer Characteristics on Pore-Filling-Membrane Performance and Durability in Anion-Exchange Water Electrolysis. Appl. Sci. 2025, 15, 1495. https://doi.org/10.3390/app15031495
Park J-H, Park Y, Jeon T-S, Seo Y, Park J-S. Impact of Cross-Linking-Monomer Characteristics on Pore-Filling-Membrane Performance and Durability in Anion-Exchange Water Electrolysis. Applied Sciences. 2025; 15(3):1495. https://doi.org/10.3390/app15031495
Chicago/Turabian StylePark, Jong-Hyeok, Yeri Park, Tae-Seok Jeon, Yuna Seo, and Jin-Soo Park. 2025. "Impact of Cross-Linking-Monomer Characteristics on Pore-Filling-Membrane Performance and Durability in Anion-Exchange Water Electrolysis" Applied Sciences 15, no. 3: 1495. https://doi.org/10.3390/app15031495
APA StylePark, J.-H., Park, Y., Jeon, T.-S., Seo, Y., & Park, J.-S. (2025). Impact of Cross-Linking-Monomer Characteristics on Pore-Filling-Membrane Performance and Durability in Anion-Exchange Water Electrolysis. Applied Sciences, 15(3), 1495. https://doi.org/10.3390/app15031495