Automatic Identification of Rock Discontinuity Sets by a Fuzzy C-Means Clustering Method Based on Artificial Bee Colony Algorithm
Abstract
:1. Introduction
2. FCM Clustering Algorithm
2.1. Measurement of Similarity
2.2. Characteristic Function
3. FCM-ABC Method for Rock Mass Structural Plane Identification
3.1. Principle of the ABC Algorithm
3.2. Improved ABC Algorithm
3.3. Clustering Validity Verification
4. Engineering Application
4.1. Discontinuity Set Survey in a Gold Mine
4.2. Verification of Discontinuity Sets’ Clustering Effect
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulatilake, P.H.S.W.; Wathugala, D.N.; Poulton, M.; Stephansson, O. Analysis of Structural Homogeneity of Rock Masses. Eng. Geol. 1990, 29, 195–211. [Google Scholar] [CrossRef]
- Martin, M.W.; Tannant, D.D. A Technique for Identifying Structural Domain Boundaries at the EKATI Diamond Mine. Eng. Geol. 2004, 74, 247–264. [Google Scholar] [CrossRef]
- Sagong, M.; Park, D.; Yoo, J.; Lee, J.S. Experimental and Numerical Analyses of an Opening in a Jointed Rock Mass under Biaxial Compression. Int. J. Rock Mech. Min. Sci. 2011, 48, 1055–1067. [Google Scholar] [CrossRef]
- Li, P.; Cai, M.F. Energy Evolution Mechanism and Failure Criteria of Jointed Surrounding Rock under Uniaxial Compression. J. Cent. South Univ. 2021, 28, 1857–1874. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, X.F.; Li, P.; Cai, M.F.; Sun, T. Macro-Meso Damage Cracking and Volumetric Dilatancy of Fault Block-in-Matrix Rocks Induced by Freeze–Thaw-Multistage Constant Amplitude Cyclic (F-T-MSCAC) Loads. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 2990–3008. [Google Scholar] [CrossRef]
- Li, P.; Cai, M.F.; Guo, Q.F.; Ren, F.H. Investigation on Acoustic Emission Characteristics of Hole-Joint Contained Granite under a Compressive Disturbance: Experimental Insights. Lithosphere 2022, 2022, 3594940. [Google Scholar] [CrossRef]
- Cai, M.F.; Wang, P.; Zhao, K.; Zhang, D.K. Fuzzy C-Means Cluster Analysis Based on Genetic Algorithm for Automatic Identification of Joint Sets. Chin. J. Rock Mech. Eng. 2005, 24, 371–376. [Google Scholar]
- Li, P.; Cai, M.F.; Gao, Y.B.; Wang, P.T.; Miao, S.J.; Wang, Y. Fracture Evolution and Failure Behavior around an Opening in Brittle Jointed Rocks Subjected to Uniaxial Compression. Theor. Appl. Fract. Mech. 2022, 122, 103651. [Google Scholar] [CrossRef]
- Li, P.; Wu, Y.Q.; Cai, M.F. Failure Behavior of the Surrounding Rock of Jointed Rock Masses in a Gold Mine under Blasting Impact Disturbance. Environ. Earth Sci. 2022, 81, 106. [Google Scholar] [CrossRef]
- Harrison, J.P. Fuzzy Objective Functions Applied to the Analysis of Discontinuity Orientation Data. In Proceedings of the Rock Characterization: ISRM Symposium, Eurock ’92, Chester, UK, 14–17 September 1992; pp. 25–30. [Google Scholar]
- Zhao, K.; Cai, M.F. Application of Fuzzy C-Means Cluster Algorithm in Identification of Structural Plane Group. Met. Mine 2002, 13–15. [Google Scholar] [CrossRef]
- Song, T.J.; Chen, J.P.; Zhang, W.; Xiang, L.J.; Yang, J.H. A Method for Multivariate Parameter Dominant Partitioning of Discontinuities of Rock Mass Based on Artificial Bee Colony Algorithm. Rock Soil Mech. 2015, 36, 861–868. [Google Scholar]
- Terzaghi, R.D. Sources of Error in Joint Surveys. Géotechnique 1965, 15, 287–304. [Google Scholar] [CrossRef]
- Zhang, L.; Einstein, H.H. Estimating the Mean Trace Length of Rock Discontinuities. Rock Mech. Rock Eng. 1998, 31, 217–235. [Google Scholar] [CrossRef]
- Shanley, R.J.; Mahtab, M.A. Delineation and Analysis of Clusters in Orientation Data. J. Int. Assoc. Math. Geol. 1976, 8, 9–23. [Google Scholar] [CrossRef]
- Mahtab, M.A.; Yegulalp, T.M. A Rejection Criterion for Definition of Clusters in Orientation Data. In Proceedings of the The 23rd U.S. Symposium on Rock Mechanics (USRMS), Berkeley, CA, USA, 25–27 August 1982; Volume All Days, p. ARMA-82-116. [Google Scholar]
- Hammah, R.E.; Curran, J.H. Fuzzy Cluster Algorithm for the Automatic Identification of Joint Sets. Int. J. Rock Mech. Min. Sci. 1998, 35, 889–905. [Google Scholar] [CrossRef]
- Dershowitz, W.; Busse, R.; Geier, J.; Uchida, M. A Stochastic Approach for Fracture Set Definition. In Proceedings of the 2nd North America Rock Mechanics Symposium, Montreal, QC, Canada, 19–21 June 1996; Volume All Days, p. ARMA-96-1809. [Google Scholar]
- Zhou, Y.X.; Zhou, Z.F.; Sun, Q.G. Synthetical Fuzzy Clustering Analysis for Joints Occurrence of Rock Mass. Chin. J. Rock Mech. Eng. 2005, 24, 2283–2287. [Google Scholar]
- Jimenez-Rodriguez, R.; Sitar, N. A Spectral Method for Clustering of Rock Discontinuity Sets. Int. J. Rock Mech. Min. Sci. 2006, 43, 1052–1061. [Google Scholar] [CrossRef]
- Tokhmechi, B.; Memarian, H.; Moshiri, B.; Rasouli, V.; Noubari, H.A. Investigating the Validity of Conventional Joint Set Clustering Methods. Eng. Geol. 2011, 118, 75–81. [Google Scholar] [CrossRef]
- Sirat, M.; Talbot, C.J. Application of Artificial Neural Networks to Fracture Analysis at the Äspö HRL, Sweden: Fracture Sets Classification. Int. J. Rock Mech. Min. Sci. 2001, 38, 621–639. [Google Scholar] [CrossRef]
- Dunn†, J.C. Well-Separated Clusters and Optimal Fuzzy Partitions. J. Cybern. 1974, 4, 95–104. [Google Scholar] [CrossRef]
- Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. In Advanced Applications in Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Gao, X.B.; Li, J.; Xie, W.X. Optimal Choice of Weighting Exponent in a Fuzzy C Means Clustering Algorithm. Pattern Recognit. Artif. Intell. 2000, 13, 7–12. [Google Scholar]
- Karaboğa, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-TR06; Erciyes University: Kayseri, Türkiye, 2005. [Google Scholar]
- Karaboga, D.; Basturk, B. A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the Performance of Artificial Bee Colony (ABC) Algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Karaboga, D.; Ozturk, C. A Novel Clustering Approach: Artificial Bee Colony (ABC) Algorithm. Appl. Soft Comput. 2011, 11, 652–657. [Google Scholar] [CrossRef]
- Akay, B.; Karaboga, D. Artificial Bee Colony Algorithm for Large-Scale Problems and Engineering Design Optimization. J. Intell. Manuf. 2012, 23, 1001–1014. [Google Scholar] [CrossRef]
- Brajevic, I.; Tuba, M. An Upgraded Artificial Bee Colony (ABC) Algorithm for Constrained Optimization Problems. J. Intell. Manuf. 2013, 24, 729–740. [Google Scholar] [CrossRef]
- Qin, Q.D.; Cheng, S.; Li, L.; Shi, Y.H. Artificial Bee Colony Algorithm: A Survey. CAAI Trans. Intell. Syst. 2014, 9, 127–135. [Google Scholar]
- Gath, I.; Geva, A.B. Unsupervised Optimal Fuzzy Clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 773–780. [Google Scholar] [CrossRef]
- Dong, F.R.; Wang, S.H.; Hou, Q.K. Multi-Parameter Dominant Grouping Method of Rock Mass Discontinuity Based on Principal Component Analysis. Rock Soil Mech. 2022, 43, 2457–2470. [Google Scholar]
- Park, C.H.; Bobet, A. Crack Coalescence in Specimens with Open and Closed Flaws: A Comparison. Int. J. Rock Mech. Min. Sci. 2009, 46, 819–829. [Google Scholar] [CrossRef]
- Zhang, X.P.; Wong, L.N.Y. Crack Initiation, Propagation and Coalescence in Rock-like Material Containing Two Flaws: A Numerical Study Based on Bonded-Particle Model Approach. Rock Mech. Rock Eng. 2013, 46, 1001–1021. [Google Scholar] [CrossRef]
- Li, P.; Cai, M.F.; Gao, Y.B.; Guo, Q.F.; Miao, S.J.; Ren, F.H.; Wang, Y. Mechanical Responses and Fracturing Behavior of Jointed Rock Masses with a Cavity under Different Dynamic Loads. Int. J. Impact Eng. 2023, 178, 104608. [Google Scholar] [CrossRef]
- Afolagboye, L.O.; He, J.M.; Wang, S.J. Crack Initiation and Coalescence Behavior of Two Non-Parallel Flaws. Geotech. Geol. Eng. 2018, 36, 105–133. [Google Scholar] [CrossRef]
- Li, P.; Cai, M.F.; Miao, S.J.; Li, Y.; Wang, Y. Correlation between the Rock Mass Properties and Maximum Horizontal Stress: A Case Study of Overcoring Stress Measurements. Int. J. Miner. Metall. Mater. 2025, 32, 39–48. [Google Scholar] [CrossRef]
Group | Trace Length (m) | Dip Direction (°) | Dip Angle (°) | Spacing (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Distribution Model | Mean Value | Standard Deviation | Distribution Model | Mean Value | Standard Deviation | Distribution Model | Mean Value | Standard Deviation | Distribution Model | Mean Value | Standard Deviation | |
No. 1 | Normal | 0.44 | 0.103 | Normal | 251.88 | 39.4 | Normal | 56.65 | 16.06 | Negative exponential | 0.34 | 0.35 |
No. 2 | Normal | 0.25 | 0.06 | Normal | 49.21 | 19.75 | Normal | 42.70 | 16.92 | Negative exponential | 0.11 | 0.07 |
c | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|
Hm | 0.10 | 0.21 | 0.19 | 0.19 | 0.19 | 0.22 |
Fm | 0.58 | 0.25 | 0.18 | 0.13 | 0.10 | 0.09 |
Fh | 998.47 | 1288.00 | 1340.69 | 1297.49 | 1322.03 | 1459.50 |
Algorithm | Hm | Fm | Fh | Iterations | Convergence Time/s |
---|---|---|---|---|---|
FCM-ABC | 0.10 | 0.58 | 998.47 | 125 | 0.02 |
FCM | 0.15 | 0.27 | 1195.91 | 308 | 8.99 |
Genetic algorithm | 0.18 | 0.21 | 1453.83 | 562 | 306.69 |
Neural network | 0.20 | 0.13 | 1501.55 | 40037 | 509.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Chen, T.; Liu, Y.; Cai, M.; Sun, L.; Wang, P.; Wang, Y.; Zhang, X. Automatic Identification of Rock Discontinuity Sets by a Fuzzy C-Means Clustering Method Based on Artificial Bee Colony Algorithm. Appl. Sci. 2025, 15, 1497. https://doi.org/10.3390/app15031497
Li P, Chen T, Liu Y, Cai M, Sun L, Wang P, Wang Y, Zhang X. Automatic Identification of Rock Discontinuity Sets by a Fuzzy C-Means Clustering Method Based on Artificial Bee Colony Algorithm. Applied Sciences. 2025; 15(3):1497. https://doi.org/10.3390/app15031497
Chicago/Turabian StyleLi, Peng, Tianqi Chen, Yan Liu, Meifeng Cai, Liang Sun, Peitao Wang, Yu Wang, and Xuepeng Zhang. 2025. "Automatic Identification of Rock Discontinuity Sets by a Fuzzy C-Means Clustering Method Based on Artificial Bee Colony Algorithm" Applied Sciences 15, no. 3: 1497. https://doi.org/10.3390/app15031497
APA StyleLi, P., Chen, T., Liu, Y., Cai, M., Sun, L., Wang, P., Wang, Y., & Zhang, X. (2025). Automatic Identification of Rock Discontinuity Sets by a Fuzzy C-Means Clustering Method Based on Artificial Bee Colony Algorithm. Applied Sciences, 15(3), 1497. https://doi.org/10.3390/app15031497