Analysis of Suitable Cultivation Sites for Gastrodia elata Using GIS: A Comparison of Various Classification Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Overview and Selection of the Study Area
2.2. Selection of Factors for Suitable GE Cultivation Site Analysis and Assignment of Weights Based on Criteria
2.3. Generation of Thematic Maps for Environmental Factors
2.4. Generation and Analysis of Composite Suitability Map and Final Suitability Map
3. Results and Discussion
3.1. Analysis of Composite Suitability Map by Classification Method
3.2. Analysis of Final Suitability Map Excluding Extreme-Temperature Regions
3.3. Evaluation of Similarities Among Classification Methods
3.3.1. Similarity Evaluation Based on NB
3.3.2. Similarity Evaluation Based on Qu
3.3.3. Similarity Evaluation Based on EI
3.3.4. Similarity Evaluation Based on GI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.T.; Kim, S.T.; Lee, W.Y.; Park, E.J. Introduction and Growth of Vegetative Stems through In Vitro Culture of Gastodia elata. Korean J. Med. Crop Sci. 2013, 21, 142–147, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Ho, L.-H.; Lee, Y.-I.; Hsieh, S.-Y.; Lin, I.-S.; Wu, Y.-C.; Ko, H.-Y.; Klemens, P.A.; Neuhaus, H.E.; Chen, Y.-M.; Huang, T.-P.; et al. GeSUT4 mediates sucrose import at the symbiotic interface for carbon allocation of heterotrophic Gastrodia elata (Orchidaceae). Plant Cell Environ. 2021, 44, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Khanh, N.V.; Dutta, S.; Kim, C.-S.; Lee, Y.H. Features of bacterial and fungal communities in the rhizosphere of Gastrodia elata cultivated in greenhouse for early harvest. Front. Microbiol. 2024, 15, 1389907. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Yin, M.; Wu, J.; Yu, H.; Liu, M.; Xu, R.; Wang, J.; Peng, H.; Zha, L.; Gui, S. Comparative transcriptome analysis of tubers, stems, and flowers of Gastrodia elata Blume reveals potential genes involved in the biosynthesis of phenolics. Fitoterapia 2021, 153, 104988. [Google Scholar] [CrossRef]
- Yu, E.; Gao, Y.; Li, Y.; Zang, P.; Zhao, Y.; He, Z. An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification and evaluation of Armillaria. BMC Plant Biol. 2022, 22, 621. [Google Scholar] [CrossRef]
- Yu, E.; Liu, Q.; Gao, Y.; Li, Y.; Zang, P.; Zhao, Y.; He, Z. An exploration of mechanism of high quality and yield of Gastrodia elata Bl. f. glauca by the isolation, identification, and evaluation of Mycena. Front. Microbiol. 2023, 14, 1220670. [Google Scholar] [CrossRef]
- Kim, H.T.; Park, E.J. Change of Major Functional Components of Gastrodia elata Blume with Cultivation Conditions and Harvest Times. Korean J. Med. Crop Sci. 2013, 21, 282–288, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Gong, M.; Lai, F.; Chen, J.; Li, X.; Chen, Y.; He, Y. Traditional uses, phytochemistry, pharmacology, applications, and quality control of Gastrodia elata Blume: A comprehensive review. J. Ethnopharmacol. 2024, 319, 117128. [Google Scholar] [CrossRef]
- Mügge, F.L.B.; Sim, C.M.; Honermeier, B.; Morlock, G.E. Bioactivity Profiling and Quantification of Gastrodin in Gastrodia elata Cultivated in the Field versus Facility via Hyphenated High-Performance Thin-Layer Chromatography. Int. J. Mol. Sci. 2023, 24, 9936. [Google Scholar] [CrossRef]
- Kim, H.T.; Kim, J.A.; Park, E.J. Genetic Diversity and Metabolite Analysis of Gastrodia elata by Inter-Simple Sequence Repeats (ISSR) Markers. Korean J. Med. Crop Sci. 2012, 20, 440–446, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Wang, D.; Yang, S.; Feng, Y. Myocardial protection properties of parishins from the roots of Gastrodia elata Bl. Biomed. Pharmacother. 2020, 121, 109645. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.C.; Park, J.Y.; An, S.M.; Lee, J.M.; Yun, C.Y.; Shin, H.M.; Kwon, T.K.; Lee, S.H. Anti-oxidant and Anti-tumor Activities of Crude Extracts by Gastrodia elata Blume. Korean J. Food Preserv. 2006, 13, 83–87, (In Korean with English abstract). [Google Scholar]
- Korea Forest Service. 2015 Production of Forest Products; Korea Forest Service: Daejeon, Republic of Korea, 2016; p. 33. (In Korean) [Google Scholar]
- Korea Forest Service. 2016 Production of Forest Products; Korea Forest Service: Daejeon, Republic of Korea, 2017; p. 32. (In Korean) [Google Scholar]
- Korea Forest Service. 2018 Production of Forest Products; Korea Forest Service: Daejeon, Republic of Korea, 2019; p. 30. (In Korean) [Google Scholar]
- Korea Forest Service. 2020 Production of Forest Products; Korea Forest Service: Daejeon, Republic of Korea, 2021; p. 32. (In Korean) [Google Scholar]
- Korea Forest Service. 2022 Production of Forest Products; Korea Forest Service: Daejeon, Republic of Korea, 2023; p. 32. (In Korean) [Google Scholar]
- Yang, X.D.; Zhu, J.; Yang, R.; Liu, J.P.; Li, L.; Zhang, H.B. Phenolic constituents from the rhizomes of Gastrodia elata. Nat. Prod. Res. 2007, 21, 180–186. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, C.; Hou, J.; Long, H.; Wang, B.; Guo, D.; Lei, M.; Wu, W. Gastrodia elata Blume Polysaccharides: A Review of Their Acquisition, Analysis, Modification, and Pharmacological Activities. Molecules 2019, 24, 2436. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-H.; Liang, Z.-C.; Shieh, W.-J.; Chang, S.-L.; Ho, W.-J. Effects of Nutrients and Growth Regulators on Seed Germination and Development of Juvenile Rhizome Proliferation of Gastrodia elata In Vitro. Agriculture 2022, 12, 1210. [Google Scholar] [CrossRef]
- Jo, W.S.; Lee, S.; Choi, H.; Sul, P.; Lee, S.H.; Son, J.W.; Lim, M.H. Studies on the technique of cultivating Gastrodia elata using small diameter log. J. Mushroom 2017, 15, 69–72, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Kim, C.S.; Yu, I.Y.; Kim, D.W.; Kim, J.Y.; Kim, J.M.; Lee, W.H. Effect of Yield and Quality for Cultivation Type and Mulching Materials on Gastrodia elata Blume. Korean J. Plant Res. 2017, 30, 78–87, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Kim, C.S.; Kim, H.J.; Seo, S.Y.; Kim, H.J.; Lee, W.H. The optimum temperatures during cultivation period of Gastrodia elata according to growth stages. J. Mushroom 2018, 16, 90–95, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Jin, X.-H.; Wang, Y.-C.; Li, D.; Li, Y.; He, H.-Y.; Zhang, H.-B. Diverse Mycena Fungi and Their Potential for Gastrodia elata Germination. J. Microbiol. Biotechnol. 2024, 34, 1249–1259. [Google Scholar] [CrossRef]
- Liu, J.-J.; Yang, X.-Q.; Li, Z.-Y.; Miao, J.-Y.; Li, S.-B.; Zhang, W.-P.; Lin, Y.-C.; Lin, L.-B. The role of symbiotic fungi in the life cycle of Gastrodia elata Blume (Orchidaceae): A comprehensive review. Front. Plant Sci. 2024, 14, 1309038. [Google Scholar] [CrossRef]
- Han, X.; Shi, H.; Liu, K.; Zhong, L.; Wang, F.; You, Q. Protective effect of gastrodin on myocardial ischemia-reperfusion injury and the expression of Bax and Bcl-2. Exp. Ther. Med. 2019, 17, 4389–4394. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.; Choong, L.-X.C.; Panyod, S.; Lin, Y.-E.; Huang, H.-S.; Lu, K.-H.; Wu, W.-K.; Sheen, L.-Y. Gastrodia elata Blume water extract modulates neurotransmitters and alters the gut microbiota in a mild social defeat stress-induced depression mouse model. Phytother. Res. 2021, 35, 5133–5142. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Xin, M.J.; Cha, J.Y.; Ji, S.J.; Kwon, S.U.; Jee, H.K.; Pakr, M.R.; Park, Y.S.; Kim, C.T.; Kim, D.K.; et al. Antitumor and Immunomodulatory Effect of Gastrodia elata on Colon Cancer In Vitro and In Vivo. Am. J. Chin. Med. 2017, 45, 319–335. [Google Scholar] [CrossRef]
- Lin, Y.E.; Lin, C.H.; Ho, E.P.; Ke, Y.C.; Petridi, S.; Elliott, C.J.; Sheen, L.Y.; Chien, C.T. Glial Nrf2 signaling mediates the neuroprotection exerted by Gastrodia elata Blume in Lrrk2-G2019S Parkinson’s disease. eLife 2021, 10, e73753. [Google Scholar] [CrossRef]
- Wang, X.; Tan, Y.; Zhang, F. Ameliorative effect of gastrodin on 3,3′-iminodipropionitrile-induced memory impairment in rats. Neurosci. Lett. 2015, 594, 40–45. [Google Scholar] [CrossRef]
- Hu, J.; Feng, Y.; Zhong, H.; Liu, W.; Tian, X.; Wang, Y.; Tan, T.; Hu, Z.; Liu, Y. Impact of climate change on the geographical distribution and niche dynamics of Gastrodia elata. PeerJ 2023, 11, e15741. [Google Scholar] [CrossRef]
- Li, C.; Shen, T.; Liu, H.; Wang, Y. Simulation of suitable habitats and geographic tracing based on medicinal and edible plants with Gastrodia elata Bl. as an example. Glob. Ecol. Conserv. 2024, 49, e02790. [Google Scholar] [CrossRef]
- Jiang, W.K.; Zhang, J.Q.; Guo, L.P.; Yang, Y.; Xiao, C.H.; Yuan, Q.S.; Wang, X.; Zhou, T. Thoughts and suggestions on ecological cultivation of Gastrodia elata. China J. Chin. Mater. Médica 2022, 47, 2277–2280, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Xie, X.; Shi, R.; Yan, X.; Zhang, A.; Wang, Y.; Jiao, J.; Yu, Y.; Horowitz, A.R.; Lu, J.; He, X. Changes in Soil Chemistry and Microbial Communities in Rhizospheres of Planted Gastrodia elata on a Barren Slope and under a Forest. Forests 2024, 15, 331. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Yuan, Q.; Guo, L.; Zheng, G.; Xiao, C.; Yang, C.; Jiang, W.; Zhou, T. Composition and diversity of soil microbial communities change by introducing Phallus impudicus into a Gastrodia elata Bl.-based soil. BMC Microbiol. 2024, 24, 204. [Google Scholar] [CrossRef]
- Brito, C.; Crespo, E.G.; Paulo, O.S. Modelling wildlife distributions: Logistic Multiple Regression vs. Overlap Analysis. Ecography 1999, 22, 251–260. [Google Scholar] [CrossRef]
- Muju County. 2023 Muju Statistical Yearbook; Muju County: Muju County, Republic of Korea, 2024; pp. 34–35. [Google Scholar]
- Korea Forest Service. Standard Cultivation Guidelines for Forest Products; Korea Forest Service: Daejeon, Republic of Korea, 2021; pp. 831–834. (In Korean) [Google Scholar]
- Rural Development Administration. Medicinal Mushroom Guidelines; Rural Development Administration: Jeonju-si, Republic of Korea, 2018; pp. 71–83. (In Korean) [Google Scholar]
- Muju Gastrodia elata Project. Cultivation Manual of Gastrodia elata; Hope Printing Planning: Jeonju-si, Republic of Korea, 2013; p. 6. (In Korean) [Google Scholar]
- Hopkins, L.D. Method for generating land suitability maps: A comparative evaluation. J. Am. Inst. Plan. 1977, 43, 386–400. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef]
- Ann, J.M.; Woo, J.C.; Yun, H.Y.; Lee, D.S.; Lee, S.H.; Lee, Y.J.; Lee, W.K.; Lim, Y.J. Forest Management, 1st ed.; Hyangmun Press: Seoul, Republic of Korea, 2007; p. 287. (In Korean) [Google Scholar]
- Kim, Y.W.; Hong, S.Y.; Jang, M.W. Comparison between Spatial Interpolation Methods of Temperature Data for Garlic Cultivation. J. Korean Soc. Agric. Eng. 2011, 53, 1–7, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Wang, D.; Li, C.; Song, X.; Wang, J.; Yang, X.; Huang, W.; Wang, J.; Zhou, J. Assessment of Land Suitability Potentials for Selecting Winter Wheat Cultivation Areas in Beijing, China, Using RS and GIS. Agric. Sci. China 2011, 10, 1419–1430. [Google Scholar] [CrossRef]
- Vojtek, M.; Vojteková, J.; Pham, Q.B. GIS-Based Spatial and Multi-Criteria Assessment of Riverine Flood Potential: A Case Study of the Nitra River Basin, Slovakia. ISPRS Int. J. Geo-Inf. 2021, 10, 578. [Google Scholar] [CrossRef]
- Reclassify Field (Data Management). Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/data-management/reclassify-field.htm (accessed on 14 October 2024).
- Gui, R.; Song, W.; Pu, X.; Lu, Y.; Liu, C.; Chen, L. A River Channel Extraction Method Based on a Digital Elevation Model Retrieved from Satellite Imagery. Water 2022, 14, 2387. [Google Scholar] [CrossRef]
- Moreira, L.L.; de Brito, M.M.; Kobiyama, M. Effects of Different Normalization, Aggregation, and Classification Methods on the Construction of Flood Vulnerability Indexes. Water 2021, 13, 98. [Google Scholar] [CrossRef]
- Woo, J.C.; Kim, S.B.; Kim, H.H.; Park, J.W.; Song, B.M.; An, K.W.; Lee, S.H.; Lee, Y.J.; Lee, W.K.; Lee, J.S.; et al. New Forest Management, 2nd ed.; Hyangmun Press: Seoul, Republic of Korea, 2021; pp. 220–221. (In Korean) [Google Scholar]
- Li, B.; Wang, N.; Chen, J. GIS-Based Landslide Susceptibility Mapping Using Information, Frequency Ratio, and Artificial Neural Network Methods in Qinghai Province, Northwestern China. Adv. Civ. Eng. 2021, 1, 4758062. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Wang, G.; Ning, Z.; Lian, B.; Li, S.; Tsangaratos, P.; Ilia, I.; Xue, W. Optimizing Rotation Forest-Based Decision Tree Algorithms for Groundwater Potential Mapping. Water 2023, 15, 2287. [Google Scholar] [CrossRef]
- Baeza, C.; Lantada, N.; Amorim, S. Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ. Earth Sci. 2016, 75, 1318. [Google Scholar] [CrossRef]
- Hinojos Mendoza, G.; Gutierrez Ramos, C.A.; Heredia Corral, D.M.; Soto Cruz, R.; Garbolino, E. Assessing Suitable Areas of Common Grapevine (Vitis vinifera L.) for Current and Future Climate Situations: The CDS Toolbox SDM. Atmosphere 2020, 11, 1201. [Google Scholar] [CrossRef]
Factor | Criterion | Rank | Weight |
---|---|---|---|
Elevation (m) | 700≤ | 1 | 1 |
400 ≤ elevation < 700 | 2 | 0.67 | |
<400 | 3 | 0.33 | |
Aspect | Southeast | 1 | 1 |
Others | 2 | 0.5 | |
Slope (°) | <15 | 1 | 1 |
15≤ | 2 | 0.5 | |
Forest type (tree species) | Quercus acutissima, Q. mongoica, | 1 | 1 |
Q. variabilis, Another Quercus spp. | |||
Others | 2 | 0.5 | |
Effective soil depth (cm) | 60≤ | 1 | 1 |
30 ≤ depth < 60 | 2 | 0.67 | |
<30 | 3 | 0.33 | |
Soil texture | Loan, Sandy loam | 1 | 1 |
Others | 2 | 0.5 | |
Soil moisture | Moderately moist | 1 | 1 |
Slightly dry, slightly moist | 2 | 0.67 | |
Dry, wet | 3 | 0.33 | |
Organic matter content (%) | 4≤ | 1 | 1 |
2 ≤ organic content < 4 | 2 | 0.67 | |
<2 | 3 | 0.33 | |
Drainage | Good, very good | 1 | 1 |
Moderate | 2 | 0.67 | |
Poor | 3 | 0.33 | |
Growing season temperature (April–November) (°C) | 15 ≤ temperature < 30 | 1 | 1 |
Other | 2 | 0.5 | |
Active growth period temperature (June–October) (°C) | 20 ≤ temperature ≤ 25 | 1 | 1 |
Other | 2 | 0.5 | |
Summer temperature (June–August) (°C) | 30≤ | – | Exclusion x |
Winter temperature (December–February z) (°C) | ≤−15 | – | Exclusion |
Temperature Factor | Average Temperatures by AWS Locations (°C) | |||||||
---|---|---|---|---|---|---|---|---|
Muju (212 y) | Deogyusan (660) | Seolcheonbong (1515) | Gagok (118) | Daedeok (205) | Buksang (324) | Donghyang (320) | Jinan-Jucheon (269) | |
GST z | 17.6 | 15.5 | 11.1 | 17.9 | 17.4 | 17.2 | 16.6 | 16.6 |
AGPT | 20.8 | 18.6 | 14.1 | 21.2 | 20.5 | 20.3 | 19.9 | 20.0 |
ST | 29.9 | 26.5 | 21.6 | 30.3 | 29.3 | 29.0 | 29.2 | 29.9 |
WT | −13.9 | −14.8 | −20.6 | −13.7 | −12.3 | −12.5 | −15.6 | −15.4 |
Classification Method | Grade | Area (ha, %) | Weighted Score Range |
---|---|---|---|
NB z | SS y | 4425.24 (9.4) | 7.97–9.96 (1.99) x |
PSS | 11,870.49 (25.2) | 7.48–7.97 (0.49) | |
PUS | 26,565.21 (56.3) | 6.80–7.48 (0.69) | |
US | 4308.26 (9.1) | 5.48–6.80 (1.32) | |
Total | 47,169.20 (100.0) | 5.48–9.96 (4.48) | |
Qu | SS | 12,154.09 (25.8) | 7.78–9.96 (2.18) |
PSS | 11,162.89 (23.7) | 7.31–7.78 (0.47) | |
PUS | 11,508.54 (24.4) | 6.97–7.31 (0.33) | |
US | 12,343.68 (26.2) | 5.48–6.97 (1.49) | |
Total | 47,169.20 (100.0) | 5.48–9.96 (4.48) | |
EI | SS | 129.41 (0.3) | 8.84–9.96 (1.12) |
PSS | 12,024.68 (25.5) | 7.72–8.84 (1.12) | |
PUS | 32,800.01 (69.5) | 6.60–7.72 (1.12) | |
US | 2215.10 (4.7) | 5.48–6.60 (1.12) | |
Total | 47,169.20 (100.0) | 5.48–9.96 (4.48) | |
GI | SS | 2826.45 (6.0) | 8.15–9.96 (1.81) |
PSS | 9327.64 (19.8) | 7.72–8.15 (0.43) | |
PUS | 17,609.01 (37.3) | 7.29–7.72 (0.43) | |
US | 17,406.10 (36.9) | 5.48–7.29 (1.81) | |
Total | 47,169.20 (100.0) | 5.48–9.96 (4.48) |
Classification Method | Grade | Area (ha, %) | Change |
---|---|---|---|
NB z | SS y | 1667.18 (11.0) | 1.6 x |
PSS | 4134.60 (27.4) | 2.2 | |
PUS | 8561.26 (56.6) | 0.3 | |
US | 751.10 (5.0) | −4.2 | |
Total | 15,114.14 (100.0) | – | |
Qu | SS | 4530.94 (30.0) | 4.2 |
PSS | 4139.02 (27.4) | 3.7 | |
PUS | 3562.12 (23.6) | −0.8 | |
US | 2882.06 (19.1) | −7.1 | |
Total | 15,114.14 (100.0) | – | |
EI | SS | 58.72 (0.4) | 0.1 |
PSS | 4472.22 (29.6) | 4.1 | |
PUS | 10,368.05 (68.6) | −0.9 | |
US | 215.15 (1.4) | −3.3 | |
Total | 15,114.14 (100.0) | – | |
GI | SS | 1071.69 (7.1) | 1.1 |
PSS | 3459.25 (22.9) | 3.1 | |
PUS | 6169.69 (40.8) | 3.5 | |
US | 4413.51 (29.2) | −7.7 | |
Total | 15,114.14 (100.0) | – |
Classification Method | Grade | NB | Overall Accuracy (%) | Kappa Coefficient | ||||
---|---|---|---|---|---|---|---|---|
SS y | PSS | PUS | US | Total | ||||
Qu z | SS | 166,718 | 286,376 | 0 | 0 | 453,094 | 47.98 | 0.31 |
PSS | 0 | 127,084 | 286,818 | 0 | 413,902 | |||
PUS | 0 | 0 | 356,212 | 0 | 356,212 | |||
US | 0 | 0 | 213,096 | 75,110 | 288,206 | |||
Total | 166,718 (100.0) x | 413,460 (30.7) | 856,126 (41.6) | 75,110 (100.0) | 1,511,414 (68.1) w | |||
EI | SS | 5872 | 0 | 0 | 0 | 5872 | 77.40 | 0.57 |
PSS | 160,846 | 286,376 | 0 | 0 | 447,222 | |||
PUS | 0 | 127,084 | 856,126 | 53,595 | 1,036,805 | |||
US | 0 | 0 | 0 | 21,515 | 21,515 | |||
Total | 166,718 (3.5) | 413,460 (69.3) | 856,126 (100.0) | 75,110 (28.6) | 1,511,414 (50.4) | |||
GI | SS | 107,169 | 0 | 0 | 0 | 107,169 | 63.42 | 0.47 |
PSS | 59,549 | 286,376 | 0 | 0 | 345,925 | |||
PUS | 0 | 127,084 | 489,885 | 0 | 616,969 | |||
US | 0 | 0 | 366,241 | 75,110 | 441,351 | |||
Total | 166,718 (64.3) | 413,460 (69.3) | 856,126 (57.2) | 75,110 (100.0) | 1,511,414 (72.7) |
Classification Method | Grade | Qu | Overall Accuracy (%) | Kappa Coefficient | ||||
---|---|---|---|---|---|---|---|---|
SS y | PSS | PUS | US | Total | ||||
NB z | SS | 166,718 | 0 | 0 | 0 | 166,718 | 47.98 | 0.31 |
PSS | 286,376 | 127,084 | 0 | 0 | 413,460 | |||
PUS | 0 | 286,818 | 356,212 | 213,096 | 856,126 | |||
US | 0 | 0 | 0 | 75,110 | 75,110 | |||
Total | 453,094 (36.8) x | 413,902 (30.7) | 356,212 (100.0) | 288,206 (26.1) | 1,511,414 (48.4) w | |||
EI | SS | 5872 | 0 | 0 | 0 | 5872 | 25.38 | 0.01 |
PSS | 447,222 | 0 | 0 | 0 | 447,222 | |||
PUS | 0 | 413,902 | 356,212 | 266,691 | 1,036,805 | |||
US | 0 | 0 | 0 | 21,515 | 21,515 | |||
Total | 453,094 (1.3) | 413,902 (0.0) | 356,212 (100.0) | 288,206 (7.5) | 1,511,414 (27.2) | |||
GI | SS | 107,169 | 0 | 0 | 0 | 107,169 | 39.59 | 0.21 |
PSS | 345,925 | 0 | 0 | 0 | 345,925 | |||
PUS | 0 | 413,902 | 203,067 | 0 | 616,969 | |||
US | 0 | 0 | 153,145 | 288,206 | 441,351 | |||
Total | 453,094 (23.7) | 413,902 (0.0) | 356,212 (57.0) | 288,206 (100.0) | 1,511,414 (45.2) |
Classification Method | Grade | EI | Overall Accuracy (%) | Kappa Coefficient | ||||
---|---|---|---|---|---|---|---|---|
SS y | PSS | PUS | US | Total | ||||
NB z | SS | 5872 | 160,846 | 0 | 0 | 166,718 | 77.40 | 0.57 |
PSS | 0 | 286,376 | 127,084 | 0 | 413,460 | |||
PUS | 0 | 0 | 856,126 | 0 | 856,126 | |||
US | 0 | 0 | 53,595 | 21,515 | 75,110 | |||
Total | 5872 (100.0) x | 447,222 (64.0) | 1,036,805 (82.6) | 21,515 (100.0) | 1,511,414 (86.7) w | |||
Qu | SS | 5872 | 447,222 | 0 | 0 | 453,094 | 25.38 | 0.01 |
PSS | 0 | 0 | 413,902 | 0 | 413,902 | |||
PUS | 0 | 0 | 356,212 | 0 | 356,212 | |||
US | 0 | 0 | 266,691 | 21,515 | 288,206 | |||
Total | 5872 (100.0) | 447,222 (0.0) | 1,036,805 (34.4) | 21,515 (100.0) | 1,511,414 (58.6) | |||
GI | SS | 5872 | 101,297 | 0 | 0 | 107,169 | 65.52 | 0.47 |
PSS | 0 | 345,925 | 0 | 0 | 345,925 | |||
PUS | 0 | 0 | 616,969 | 0 | 616,969 | |||
US | 0 | 0 | 419,836 | 21,515 | 441,351 | |||
Total | 5872 (100.0) | 447,222 (77.3) | 1,036,805 (59.5) | 21,515 (100.0) | 1,511,414 (84.2) |
Classification Method | Grade | GI | Overall Accuracy (%) | Kappa Coefficient | ||||
---|---|---|---|---|---|---|---|---|
SS y | PSS | PUS | US | Total | ||||
NB z | SS | 107,169 | 59,549 | 0 | 0 | 166,718 | 63.42 | 0.47 |
PSS | 0 | 286,376 | 127,084 | 0 | 413,460 | |||
PUS | 0 | 0 | 489,885 | 366,241 | 856,126 | |||
US | 0 | 0 | 0 | 75,110 | 75,110 | |||
Total | 107,169 (100.0) x | 345,925 (82.8) | 616,969 (79.4) | 441,351 (17.0) | 1,511,414 (69.8) w | |||
Qu | SS | 107,169 | 345,925 | 0 | 0 | 453,094 | 39.59 | 0.21 |
PSS | 0 | 0 | 413,902 | 0 | 413,902 | |||
PUS | 0 | 0 | 203,067 | 153,145 | 356,212 | |||
US | 0 | 0 | 0 | 288,206 | 288,206 | |||
Total | 107,169 (100.0) | 345,925 (0.0) | 616,969 (32.9) | 441,351 (65.3) | 1,511,414 (49.6) | |||
EI | SS | 5872 | 0 | 0 | 0 | 5872 | 65.52 | 0.47 |
PSS | 101,297 | 345,925 | 0 | 0 | 447,222 | |||
PUS | 0 | 0 | 616,969 | 419,836 | 1,036,805 | |||
US | 0 | 0 | 0 | 21,515 | 21,515 | |||
Total | 107,169 (5.5) | 345,925 (100.0) | 616,969 (100.0) | 441,351 (4.9) | 1,511,414 (52.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tak, G.; Lee, C.; Jeong, S.; Lee, S.; Ko, B.; Kim, H. Analysis of Suitable Cultivation Sites for Gastrodia elata Using GIS: A Comparison of Various Classification Methods. Appl. Sci. 2025, 15, 1511. https://doi.org/10.3390/app15031511
Tak G, Lee C, Jeong S, Lee S, Ko B, Kim H. Analysis of Suitable Cultivation Sites for Gastrodia elata Using GIS: A Comparison of Various Classification Methods. Applied Sciences. 2025; 15(3):1511. https://doi.org/10.3390/app15031511
Chicago/Turabian StyleTak, Gyeongmi, Chongkyu Lee, Seonghun Jeong, Sanghyun Lee, Byungjun Ko, and Hyun Kim. 2025. "Analysis of Suitable Cultivation Sites for Gastrodia elata Using GIS: A Comparison of Various Classification Methods" Applied Sciences 15, no. 3: 1511. https://doi.org/10.3390/app15031511
APA StyleTak, G., Lee, C., Jeong, S., Lee, S., Ko, B., & Kim, H. (2025). Analysis of Suitable Cultivation Sites for Gastrodia elata Using GIS: A Comparison of Various Classification Methods. Applied Sciences, 15(3), 1511. https://doi.org/10.3390/app15031511