Passion and Health: How Winter Swimming Influences Blood Morphology and Rheology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Intervention
2.3. Research Methods
Morphological and Rheological Assessments
2.4. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Blood Morphology and Rheology
4. Discussion
4.1. Study Limitations
4.2. Practical Applications
5. Conclusions
- In the investigated participants of both sexes, winter swimming combined with swimming pool sessions resulted in changes in selected indicators of peripheral blood morphology. In both males and females, a tendency was observed towards lower erythrocyte, leukocyte, and platelet counts after the whole season of winter swimming and swimming pool sessions.
- In the investigated participants of both sexes, winter swimming in combination with swimming pool baths resulted in increased blood plasma viscosity (BPV), although within normal limits, after the whole winter swimming season, reflecting the body’s adaptation to cold exposure and physical activity.
- No changes in blood aggregation indicators or fibrinogen were reported, which implies a positive influence of winter swimming combined with swimming in a sports pool.
- The remaining morphological indicators and the elongation index demonstrated only limited variation.
- Winter swimming-induced blood morphological and rheological changes have potential benefits for overall cardiovascular and hematological health, highlighting its role as a health-promoting activity for thermoregulation and systemic resilience.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- West, J.B. Galen and the beginnings of Western physiology. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L121–L128. [Google Scholar] [CrossRef] [PubMed]
- Tipton, M.J.; Collier, N.; Massey, H.; Corbett, J.; Harper, M.; Teległów, A. Cold water immersio: Kill or cure? J. Exp. Physiol. 2017, 101, 1335–1355. [Google Scholar] [CrossRef] [PubMed]
- Kolettis, T.M.; Kolettis, M.T. Winter swimming: Healthy or hazardous? Evidence and hypothese. Med. Hypotheses 2003, 61, 654–656. [Google Scholar] [CrossRef]
- Matuszewska, U.; Kaczmarczyk, K.; Sajdak, W.; Dabrowska, E.; Wolf, J.; Narkiewicz, K.; Dabrowska-Kugacka, A.; Lasocka, Z. The influence of winter swimming on structural changes in retinal microcirculation. J. Hypertens. 2024, 42, e298. [Google Scholar] [CrossRef]
- Kaczmarczyk, K.; Matuszewska, U.; Sajdak, W.; Dabrowska, E.; Michnowska, A.; Hellmann, M.; Wolf, J.; Narkiewicz, K.; Dabrowska-Kugacka, A.; Lasocka, Z. The impact of winter swimming on functional microvascular changes. J. Hypertens. 2024, 42, e300–e301. [Google Scholar] [CrossRef]
- Knechtle, B.; Waśkiewicz, Z.; Sousa, C.V.; Hill, L.; Nikolaidis, P.T. Cold water swimming–benefits and risks: A narrative review. Int. J. Environ. Res. Public Health 2020, 17, 8984. [Google Scholar] [CrossRef] [PubMed]
- Toth, S.; Vachalcova, M.B.; Kasko, D.; Turek, M.; Gulasova, Z.; Hertelyova, Z. Effect of repeatedly applied cold water immersion on subclinical atherosclerosis, inflammation, fat accumulation and lipid profile parameters of volunteers. Wien. Klin. Wochenschr. 2024, 136, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Teległów, A.; Bilski, J.; Dąbrowski, Z.; Marchewka, A.; Jaśkiewicz, J.; Gdula-Argasińska, J.; Głodzik, J.; Tabarowski, Z.; Lizak, D. The effects of exercise in water at 4 °C and 25 °C on the rheological properties of blood and the composition of fatty acids in the erythrocyte membranes of laboratory rats. Clin. Hemorheol. Microcirc. 2012, 51, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Lateef, F. Post exercise ice water immersion: Is it a form of active recovery? J. Emerg. Trauma Shock 2010, 3, 302. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.A.; Raastad, T.; Markworth, J.F.; Figueiredo, V.C.; Egner, I.M.; Shield, A.; Cameron-Smith, D.; Coombes, J.S.; Peake, J.M. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J. Physiol. 2015, 593, 4285–4301. [Google Scholar] [CrossRef] [PubMed]
- Mooventhan, A.; Nivethitha, L. Scientific evidence-based effects of hydrotherapy on various systems of the body. N. Am. J. Med. Sci. 2014, 6, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, P.; Cremascoli, R.; Piterà, P.; Fontana, J.M. Whole-body cryostimulation: A rehabilitation booster. J. Rehabil. Med. Clin. Commun. 2022, 5, 2810. [Google Scholar] [CrossRef]
- Solaro, N.; Giovanelli, L.; Bianchi, L.; Piterà, P.; Verme, F.; Malacarne, M.; Pagani, M.; Fontana, J.M.; Capodaglio, P.; Lucini, D. Whole-body cold stimulation improves cardiac autonomic control independently of the employed temperature. J. Clin. Med. 2024, 13, 7728. [Google Scholar] [CrossRef] [PubMed]
- Huttunen, P.; Kokko, L.; Ylijukuri, V. Winter swimming improves general well-being. Int. J. Circumpolar Health 2004, 63, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, S.; Hirvonen, J.; Joukamaa, M. Neurotic psychopathology and alexithymia among winter swimmers and controls–a prospective study. Int. J. Circumpolar Health 2002, 61, 123–130. [Google Scholar] [CrossRef]
- Bottley, K. Winter wild swimming as individual and corporate spiritual practice. Pract. Theol. 2019, 12, 343–344. [Google Scholar] [CrossRef]
- Van Tulleken, C.; Tipton, M.; Massey, H.; Harper, C.M. Open water swimming as a treatment for major depressive disorder. BMJ Case Rep. 2018, 2018, bcr2018225007. [Google Scholar] [CrossRef] [PubMed]
- Shevchuk, N.A. Adapted cold shower as a potential treatment for depression. Med. Hypotheses 2008, 70, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Dienstbier, R.A.; LaGuardia, R.L.; Wilcox, N.S. The relationship of temperament to tolerance of cold and heat: Beyond “cold hands–warm heart”. Motiv. Emot. 1987, 11, 269–295. [Google Scholar] [CrossRef]
- Young, A.J. Homeostatic responses to prolonged cold exposure: Human cold acclimatization. In Handbook of Physiology, Environmental Physiology; Fregly, M.J., Blatteis, C.M., Eds.; Oxford University Press: New York, USA, 1996; pp. 419–438. [Google Scholar]
- Carona, C.; Marques, S. Beyond the cold baths: Contemporary applications of cold-water immersion in the treatment of clinical depression and anxiety. BJPsych. Adv. 2024, 30, 271–273. [Google Scholar] [CrossRef]
- Ptaszek, B.; Podsiadło, S.; Teległów, A. Effect of whole-body cryotherapy treatments on blood morphology and blood rheology: Red blood cell deformability, red blood cell aggregation in healthy subjects. Clin. Hemorheol. Microcirc. 2023, 83, 279–286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pendergast, D.R.; Lundgren, C.E.G. The underwater environment: Cardiopulmonary, thermal, and energetic demands. J. Appl. Physiol. 2009, 106, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Brenner, I.K.; Castellani, J.W.; Gabaree, C.; Young, A.J.; Zamecnik, J.; Shephard, R.J.; Shek, P.N. Immune changes in humans during cold exposure: Effects of prior heating and exercise. J. Appl. Physiol. 1999, 87, 699–710. [Google Scholar] [CrossRef]
- Dugué, B.; Leppänen, E. Adaptation related to cytokines in man: Effects of regular swimming in ice-cold water. Clin. Physiol. 2000, 20, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Teległów, A.; Dąbrowski, Z.; Marchewka, A.; Tyka, A.; Krawczyk, M.; Głodzik, J.; Szyguła, Z.; Mleczko, E.; Bilski, J.; Tyka, A.; et al. The influence of winter swimming on the rheological properties of blood. Clin. Hemorheol. Microcirc. 2014, 57, 119–127. [Google Scholar] [CrossRef]
Parameter | Controls n = 30 | p | Winter Swimmers n = 30 | p | ||
---|---|---|---|---|---|---|
Before Season | After Season | Before Season | After Season | |||
WBC [103/mm3] | 5.51 ± 1.36 | 4.99 ± 0.97 | 0.348 | 6.46 ± 1.42 | 5.25 ± 0.87 | 0.002 |
RBC [106/mm3] | 4.45 ± 0.27 | 4.29 ± 0.16 | 0.093 | 4.59 ± 0.35 | 4.12 ± 0.46 | <0.001 |
HGB [g/dL] | 13.35 ± 0.90 | 13.00 ± 0.85 | 0.073 | 13.15 ± 1.21 | 12.99 ± 1.24 | 0.658 |
HCT [%] | 39.87 ± 2.34 | 37.25 ± 2.36 | <0.001 | 40.91 ± 3.06 | 34.93 ± 4.05 | <0.001 |
PLT [103/mm3] | 260.13 ± 53.19 | 204.87 ± 50.22 | <0.001 | 270.33 ± 87.48 | 188.47 ± 55.73 | <0.001 |
MCV [μm3] | 89.73 ± 4.87 | 86.80 ± 4.96 | 0.174 | 89.19 ± 5.83 | 85.33 ± 9.82 | 0.045 |
MCH [pg] | 30.05 ± 1.84 | 30.29 ± 2.03 | 0.964 | 28.77 ± 2.50 | 31.84 ± 3.90 | <0.001 |
MCHC [g/dL] | 33.47 ± 0.79 | 34.93 ± 1.55 | 0.049 | 32.16 ± 1.17 | 37.32 ± 2.03 | <0.001 |
RDW [%] | 12.88 ± 1.21 | 15.47 ± 2.25 | 0.001 | 13.16 ± 1.30 | 17.85 ± 2.49 | <0.001 |
MPV [μm3] | 11.07 ± 0.70 | 8.28 ± 0.46 | <0.001 | 10.25 ± 0.88 | 7.99 ± 0.44 | <0.001 |
PDW [%] | 13.22 ± 1.58 | 14.02 ± 1.52 | 0.244 | 11.78 ± 1.84 | 13.42 ± 1.22 | 0.001 |
EI at 0.30 Pa | 0.054 ± 0.014 | 0.048 ± 0.014 | 0.017 | 0.049 ± 0.014 | 0.043 ± 0.02 | 0.031 |
EI at 0.58 Pa | 0.155 ± 0.017 | 0.151 ± 0.017 | 0.538 | 0.149 ± 0.016 | 0.143 ± 0.02 | 0.092 |
EI at 1.13 Pa | 0.241 ± 0.014 | 0.242 ± 0.019 | 0.988 | 0.236 ± 0.016 | 0.234 ± 0.02 | 0.917 |
EI at 2.19 Pa | 0.344 ± 0.015 | 0.345 ± 0.015 | 0.997 | 0.336 ± 0.032 | 0.337 ± 0.02 | 0.999 |
EI at 4.24 Pa | 0.437 ± 0.011 | 0.439 ± 0.011 | 0.868 | 0.436 ± 0.014 | 0.433 ± 0.01 | 0.627 |
EI at 8.23 Pa | 0.510 ± 0.012 | 0.512 ± 0.009 | 0.776 | 0.510 ± 0.011 | 0.508 ± 0.01 | 0.826 |
EI at 15.95 Pa | 0.559 ± 0.013 | 0.563 ± 0.009 | 0.344 | 0.560 ± 0.009 | 0.557 ± 0.01 | 0.632 |
EI at 30.94 Pa | 0.597 ± 0.012 | 0.602 ± 0.008 | 0.181 | 0.597 ± 0.008 | 0.595 ± 0.01 | 0.909 |
EI at 60.00 Pa | 0.629 ± 0.009 | 0.637 ± 0.006 | 0.005 | 0.628 ± 0.007 | 0.628 ± 0.01 | 1.000 |
AMP [au] | 34.96 ± 2.84 | 35.03 ± 2.71 | 1.000 | 33.34 ± 3.75 | 32.01 ± 4.10 | 0.243 |
AI [%] | 60.25 ± 7.17 | 58.90 ± 7.68 | 0.972 | 61.21 ± 8.52 | 63.26 ± 7.96 | 0.465 |
T1/2 [s] | 2.74 ± 0.85 | 2.93 ± 0.93 | 0.954 | 2.67 ± 1.06 | 2.43 ± 0.91 | 0.570 |
BPV [mPas] | 1.37 ± 0.09 | 1.45 ± 0.05 | 0.010 | 1.42 ± 0.09 | 1.52 ± 0.10 | 0.001 |
FIB [g/L] | 3.46 ± 0.81 | 3.40 ± 0.66 | 0.990 | 3.38 ± 0.45 | 3.41 ± 0.50 | 0.999 |
Parameter | Controls | Female Winter Swimmers | p Control | p Swimmers | p c–s After | 4–1 | 3–1 | η² Factor | η² Factor * Group | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Before Season (1) | After Season (2) | Before Season (3) | After Season (4) | ||||||||
WBC [103/mm3] | 5.51 ± 1.36 | 4.99 ± 0.97 | 6.46 ± 1.42 | 5.25 ± 0.87 | 0.348 | 0.002 | 0.935 | 0.928 | 0.135 | 0.36 | 0.09 |
RBC [106/mm3] | 4.45 ± 0.27 | 4.29 ± 0.16 | 4.59 ± 0.35 | 4.12 ± 0.46 | 0.093 | <0.001 | 0.451 | 0.040 | 0.637 | 0.64 | 0.31 |
HGB [g/dL] | 13.35 ± 0.90 | 13.00 ± 0.85 | 13.15 ± 1.21 | 12.99 ± 1.24 | 0.073 | 0.658 | 1.000 | 0.792 | 0.955 | 0.20 | 0.03 |
HCT [%] | 39.87 ± 2.34 | 37.25 ± 2.36 | 40.91 ± 3.06 | 34.93 ± 4.05 | <0.001 | <0.001 | 0.175 | 0.001 | 0.781 | 0.84 | 0.44 |
PLT [103/mm3] | 260.13 ± 53.19 | 204.87 ± 50.22 | 270.33 ± 87.48 | 188.47 ± 55.73 | <0.001 | <0.001 | 0.893 | 0.020 | 0.971 | 0.81 | 0.14 |
MCV [μm3] | 89.73 ± 4.87 | 86.80 ± 4.96 | 89.19 ± 5.83 | 85.33 ± 9.82 | 0.174 | 0.045 | 0.931 | 0.288 | 0.996 | 0.30 | 0.01 |
MCH [pg] | 30.05 ± 1.84 | 30.29 ± 2.03 | 28.77 ± 2.50 | 31.84 ± 3.90 | 0.964 | <0.001 | 0.406 | 0.282 | 0.563 | 0.43 | 0.36 |
MCHC [g/dL] | 33.47 ± 0.79 | 34.93 ± 1.55 | 32.16 ± 1.17 | 37.32 ± 2.03 | 0.049 | <0.001 | <0.001 | <0.001 | 0.077 | 0.73 | 0.47 |
RDW [%] | 12.88 ± 1.21 | 15.47 ± 2.25 | 13.16 ± 1.30 | 17.85 ± 2.49 | 0.001 | <0.001 | 0.006 | <0.001 | 0.978 | 0.72 | 0.18 |
MPV [μm3] | 11.07 ± 0.70 | 8.28 ± 0.46 | 10.25 ± 0.88 | 7.99 ± 0.44 | <0.001 | <0.001 | 0.622 | <0.001 | 0.006 | 0.96 | 0.22 |
PDW [%] | 13.22 ± 1.58 | 14.02 ± 1.52 | 11.78 ± 1.84 | 13.42 ± 1.22 | 0.244 | 0.001 | 0.697 | 0.983 | 0.015 | 0.43 | 0.11 |
EI at 0.30 Pa | 0.054 ± 0.014 | 0.048 ± 0.014 | 0.049 ± 0.014 | 0.043 ± 0.02 | 0.017 | 0.031 | 0.832 | 0.174 | 0.779 | 0.40 | 0.00 |
EI at 0.58 Pa | 0.155 ± 0.017 | 0.151 ± 0.017 | 0.149 ± 0.016 | 0.143 ± 0.02 | 0.538 | 0.092 | 0.554 | 0.240 | 0.831 | 0.20 | 0.02 |
EI at 1.13 Pa | 0.241 ± 0.014 | 0.242 ± 0.019 | 0.236 ± 0.016 | 0.234 ± 0.02 | 0.988 | 0.917 | 0.674 | 0.766 | 0.912 | 0.00 | 0.02 |
EI at 2.19 Pa | 0.344 ± 0.015 | 0.345 ± 0.015 | 0.336 ± 0.032 | 0.337 ± 0.02 | 0.997 | 0.999 | 0.734 | 0.815 | 0.768 | 0.00 | 0.00 |
EI at 4.24 Pa | 0.437 ± 0.011 | 0.439 ± 0.011 | 0.436 ± 0.014 | 0.433 ± 0.01 | 0.868 | 0.627 | 0.589 | 0.819 | 0.994 | 0.00 | 0.07 |
EI at 8.23 Pa | 0.510 ± 0.012 | 0.512 ± 0.009 | 0.510 ± 0.011 | 0.508 ± 0.01 | 0.776 | 0.826 | 0.760 | 0.964 | 1.000 | 0.00 | 0.06 |
EI at 15.95 Pa | 0.559 ± 0.013 | 0.563 ± 0.009 | 0.560 ± 0.009 | 0.557 ± 0.01 | 0.344 | 0.632 | 0.553 | 0.985 | 0.987 | 0.00 | 0.13 |
EI at 30.94 Pa | 0.597 ± 0.012 | 0.602 ± 0.008 | 0.597 ± 0.008 | 0.595 ± 0.01 | 0.181 | 0.909 | 0.295 | 0.940 | 0.998 | 0.03 | 0.12 |
EI at 60.00 Pa | 0.629 ± 0.009 | 0.637 ± 0.006 | 0.628 ± 0.007 | 0.628 ± 0.01 | 0.005 | 1.000 | 0.024 | 0.992 | 0.992 | 0.20 | 0.20 |
AMP [au] | 34.96 ± 2.84 | 35.03 ± 2.71 | 33.34 ± 3.75 | 32.01 ± 4.10 | 1.000 | 0.243 | 0.114 | 0.115 | 0.592 | 0.06 | 0.06 |
AI [%] | 60.25 ± 7.17 | 58.90 ± 7.68 | 61.21 ± 8.52 | 63.26 ± 7.96 | 0.972 | 0.465 | 0.599 | 0.729 | 0.987 | 0.02 | 0.06 |
T1/2 [s] | 2.74 ± 0.85 | 2.93 ± 0.93 | 2.67 ± 1.06 | 2.43 ± 0.91 | 0.954 | 0.570 | 0.655 | 0.817 | 0.998 | 0.01 | 0.06 |
BPV [mPas] | 1.37 ± 0.09 | 1.45 ± 0.05 | 1.42 ± 0.09 | 1.52 ± 0.10 | 0.010 | 0.001 | 0.112 | <0.001 | 0.343 | 0.51 | 0.01 |
FIB [g/L] | 3.46 ± 0.81 | 3.40 ± 0.66 | 3.38 ± 0.45 | 3.41 ± 0.50 | 0.990 | 0.999 | 1.000 | 0.994 | 0.981 | 0.00 | 0.00 |
Parameter | Controls | Male Winter Swimmers | p Control | p Swimmers | p c–s After | 4–1 | 3–1 | η² Factor | η² Factor * Group | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Before Season (1) | After Season (2) | Before Season (3) | After Season (4) | ||||||||
WBC [103/mm3] | 6.19 ± 1.27 | 5.69 ± 1.28 | 6.26 ± 1.87 | 4.79 ± 1.00 | 0.466 | 0.001 | 0.230 | 0.028 | 0.999 | 0.36 | 0.09 |
RBC [106/mm3] | 4.94 ± 0.38 | 4.77 ± 0.38 | 5.04 ± 0.35 | 4.56 ± 0.35 | 0.014 | <0.001 | 0.360 | 0.033 | 0.899 | 0.64 | 0.31 |
HGB [g/dL] | 15.29 ± 0.84 | 15.06 ± 0.84 | 14.78 ± 0.79 | 14.80 ± 0.82 | 0.276 | 1.000 | 0.810 | 0.368 | 0.355 | 0.20 | 0.03 |
HCT [%] | 44.88 ± 2.59 | 43.11 ± 3.10 | 44.90 ± 2.29 | 39.38 ± 3.11 | 0.023 | <0.001 | 0.002 | <0.001 | 1.000 | 0.84 | 0.44 |
PLT [103/mm3] | 262.47 ± 53.36 | 191.33 ± 30.99 | 240.71 ± 50.36 | 168.07 ± 31.74 | <0.001 | <0.001 | 0.437 | <0.001 | 0.533 | 0.81 | 0.14 |
MCV [μm3] | 91.02 ± 3.60 | 90.47 ± 5.11 | 89.49 ± 3.86 | 86.53 ± 3.52 | 0.853 | <0.001 | 0.028 | 0.011 | 0.737 | 0.30 | 0.01 |
MCH [pg] | 31.03 ± 1.35 | 31.65 ± 1.52 | 29.49 ± 1.28 | 32.60 ± 2.23 | 0.166 | <0.001 | 0.362 | 0.056 | 0.077 | 0.43 | 0.36 |
MCHC [g/dL] | 34.09 ± 0.80 | 34.99 ± 1.29 | 32.86 ± 0.74 | 37.71 ± 2.18 | 0.175 | <0.001 | <0.001 | <0.001 | 0.062 | 0.73 | 0.47 |
RDW [%] | 12.86 ± 0.74 | 15.04 ± 1.94 | 12.55 ± 0.67 | 17.44 ± 2.34 | 0.002 | <0.001 | <0.001 | <0.001 | 0.952 | 0.72 | 0.18 |
MPV [μm3] | 10.51 ± 0.93 | 7.83 ± 0.55 | 9.85 ± 0.74 | 7.63 ± 0.41 | <0.001 | <0.001 | 0.865 | <0.001 | 0.068 | 0.96 | 0.22 |
PDW [%] | 12.72 ± 1.90 | 12.49 ± 1.50 | 11.14 ± 1.37 | 12.02 ± 1.19 | 0.903 | 0.051 | 0.879 | 0.666 | 0.039 | 0.43 | 0.11 |
EI at 0.30 Pa | 0.058 ± 0.010 | 0.053 ± 0.009 | 0.055 ± 0.017 | 0.051 ± 0.009 | 0.118 | 0.118 | 0.933 | 0.310 | 0.891 | 0.40 | 0.00 |
EI at 0.58 Pa | 0.156 ± 0.013 | 0.151 ± 0.012 | 0.151 ± 0.020 | 0.144 ± 0.014 | 0.307 | 0.064 | 0.560 | 0.141 | 0.833 | 0.20 | 0.02 |
EI at 1.13 Pa | 0.242 ± 0.013 | 0.239 ± 0.012 | 0.237 ± 0.020 | 0.229 ± 0.014 | 0.733 | 0.047 | 0.285 | 0.105 | 0.828 | 0.00 | 0.02 |
EI at 2.19 Pa | 0.346 ± 0.009 | 0.345 ± 0.011 | 0.344 ± 0.016 | 0.337 ± 0.011 | 0.979 | 0.011 | 0.232 | 0.170 | 0.947 | 0.00 | 0.00 |
EI at 4.24 Pa | 0.438 ± 0.007 | 0.439 ± 0.008 | 0.438 ± 0.013 | 0.433 ± 0.008 | 0.785 | 0.012 | 0.246 | 0.457 | 1.000 | 0.00 | 0.07 |
EI at 8.23 Pa | 0.512 ± 0.006 | 0.516 ± 0.006 | 0.512 ± 0.008 | 0.510 ± 0.005 | 0.047 | 0.527 | 0.124 | 0.804 | 0.997 | 0.00 | 0.06 |
EI at 15.95 Pa | 0.563 ± 0.007 | 0.567 ± 0.006 | 0.561 ± 0.009 | 0.561 ± 0.007 | 0.226 | 0.994 | 0.106 | 0.852 | 0.932 | 0.00 | 0.13 |
EI at 30.94 Pa | 0.600 ± 0.005 | 0.604 ± 0.005 | 0.600 ± 0.006 | 0.599 ± 0.006 | 0.001 | 0.429 | 0.016 | 0.792 | 1.000 | 0.03 | 0.12 |
EI at 60.00 Pa | 0.630 ± 0.006 | 0.635 ± 0.005 | 0.628 ± 0.006 | 0.630 ± 0.005 | <0.001 | 0.696 | 0.014 | 0.932 | 0.605 | 0.20 | 0.20 |
AMP [au] | 37.96 ± 3.10 | 37.26 ± 2.04 | 36.31 ± 2.22 | 36.36 ± 2.74 | 0.714 | 0.996 | 0.664 | 0.257 | 0.331 | 0.06 | 0.06 |
AI [%] | 62.63 ± 7.44 | 62.04 ± 5.62 | 59.50 ± 7.96 | 63.37 ± 6.17 | 0.982 | 0.056 | 0.867 | 0.947 | 0.627 | 0.02 | 0.06 |
T1/2 [s] | 2.46 ± 0.91 | 2.49 ± 0.61 | 2.82 ± 1.10 | 2.32 ± 0.61 | 0.999 | 0.082 | 0.874 | 0.907 | 0.651 | 0.01 | 0.06 |
BPV [mPas] | 1.44 ± 0.10 | 1.46 ± 0.07 | 1.44 ± 0.07 | 1.54 ± 0.08 | 0.982 | 0.007 | 0.029 | 0.012 | 0.995 | 0.51 | 0.01 |
FIB [g/L] | 3.93 ± 1.23 | 3.54 ± 0.82 | 3.15 ± 0.49 | 3.35 ± 0.67 | 0.482 | 0.835 | 0.970 | 0.373 | 0.099 | 0.02 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teległów, A.; Frankiewicz, M.; Marchewka, J. Passion and Health: How Winter Swimming Influences Blood Morphology and Rheology. Appl. Sci. 2025, 15, 1514. https://doi.org/10.3390/app15031514
Teległów A, Frankiewicz M, Marchewka J. Passion and Health: How Winter Swimming Influences Blood Morphology and Rheology. Applied Sciences. 2025; 15(3):1514. https://doi.org/10.3390/app15031514
Chicago/Turabian StyleTeległów, Aneta, Marta Frankiewicz, and Jakub Marchewka. 2025. "Passion and Health: How Winter Swimming Influences Blood Morphology and Rheology" Applied Sciences 15, no. 3: 1514. https://doi.org/10.3390/app15031514
APA StyleTeległów, A., Frankiewicz, M., & Marchewka, J. (2025). Passion and Health: How Winter Swimming Influences Blood Morphology and Rheology. Applied Sciences, 15(3), 1514. https://doi.org/10.3390/app15031514