Fluorinated and Non-Fluorinated Electro-Optic Copolymers: Determination of the Time and Temperature Stability of the Induced Electro-Optic Coefficient
Abstract
:1. Introduction
2. Electro-Optic Properties of Polymers
2.1. Second Order Nonlinear Susceptibility
2.2. Electro-Optic Properties of a Single Molecule
Chromophore | λmax (nm, CHCl3) | μ0 (Debye) | β0 (10−30 esu) | β1.9μm (10−30 esu) | μ0β 1.9μm (10−48 esu) |
---|---|---|---|---|---|
DR1 | 480 (497) | 7.7 (8.7) | 40 | 5,046 | 580 |
2.3. Inducing of the Macroscopic Electro-Optic Properties
2.4. Steady-State Properties of the Induced Electo-Optic Coefficient
2.5. Transient Properties
3. Measurement Techniques of the Electro-Optic Coefficient
3.1. Nonlinear Ellipsometry
3.2. Second Harmonic Generation
3.3. Temperature Scanning Technique
3.4. Isothermal Relaxation Measurements
4. Stability of Some Fluorinated Polymers
4.1. HFIP-DR1AF
4.2. FATRIFE-DR1AF
4.3. ADAMANTANE-DR1AF
4.4. Polyimides-EHNT
4.5. Phenyltetraenic and AJL8 in Antrhracene Crosslinkable Matrix
4.6. FTC-EGDMA
5. Conclusions
Acknowledgments
References
- Zyss, J. Molecular Nonlinear Optics; Academic Press Inc.: San Diego, CA, USA, 1994. [Google Scholar]
- Rousseau, A.; Boutevin, B. Synthesis and characterization of organic materials for integrated optical devices. AIP Conf. Proc. 2003, 709, 214–232. [Google Scholar]
- Pyayt, A.L. Guiding light in electro-optic polymers. Polymers 2011, 3, 1591–1599. [Google Scholar] [CrossRef]
- Oh, M.-C.; Kim, K.-J.; Chu, W.-S.; Kim, J.-W.; Seo, J.-K.; Noh, Y.-O.; Lee, H.-J. Integrated photonic devices incorporating low-loss fluorinated polymer materials. Polymers 2011, 3, 975–997. [Google Scholar] [CrossRef]
- Lee, M.; Katz, H.E.; Erben, C.; Gill, D.M.; Gopalan, P.; Heber, J.D.; McGee, D.J. Broadband modulation of light by using an electro-optic polymer. Science 2002, 298, 1401–1403. [Google Scholar]
- Sun, H.; Chen, A.; Olbricht, B.C.; Davies, J.A.; Sullivan, P.A.; Liao, Y.; Dalton, L.R. Direct electron beam writing of electro-optic polymer microring resonators. Opt. Express 2008, 16, 6592–6599. [Google Scholar]
- Sun, H.; Chen, A.; Olbricht, B.C.; Davies, J.A.; Sullivan, P.A.; Liao, Y.; Dalton, L.R. Microring resonators fabricated by electron beam bleaching of chromophore doped polymers. Appl. Phys. Lett. 2008, 92, 193305:1–193305:3. [Google Scholar]
- Song, H.-C.; Oh, M.-C.; Ahn, S.-W.; Steier, W.H.; Fetterman, H.R.; Zhang, C. Flexible low-voltage electro-optic polymer modulators. Appl. Phys. Lett. 2003, 82, 4432–4434. [Google Scholar]
- Belardini, A.; Larciprete, M.C.; Cianci, E.; Foglietti, V.; Ratsimihety, A.; Rousseau, A.; Michelotti, F. Direct E-beam writing of electro-optic polymer channel waveguides. AIP Conf. Proc. 2003, 709, 427–428. [Google Scholar]
- Mori, Y.; Nakaya, K.; Piao, X.; Yamamoto, K.; Otomo, A.; Yokoyama, S. Large electro-optic activity and enhanced temporal stability of methacrylate-based crosslinking hyperbranched nonlinear optical polymer. J. Polym. Sci. A Polym. Chem. 2012, 50, 1254–1260. [Google Scholar] [CrossRef]
- Belardini, A.; Dominici, L.; Larciprete, M.C.; Michelotti, F.; Rousseau, A.; Ratsimihety, A. Enhanced stability of the second order optical properties of high-Tg fluorinated electro-optic copolymer. Appl. Phys. Lett. 2006, 89, 231110:1–231110:3. [Google Scholar]
- Pliška, T.; Cho, W.-R.; Meier, J.; Le Duff, A.-C.; Ricci, V.; Otomo, A.; Canva, M.; Stegeman, G.I.; Raimond, P.; Kajzar, F. Comparative study of nonlinear-optical polymers for guided-wave second-harmonic generation at telecommunication wavelengths. J. Opt. Soc. Am. B 2000, 17, 1554–1564. [Google Scholar] [CrossRef]
- Teng, C.C.; Man, H.T. Simple reflection technique for measuring the electro-optic coefficient of poled polymers. Appl. Phys. Lett. 1990, 56, 1734–1736. [Google Scholar] [CrossRef]
- Schildkraut, J.S. Determination of the electrooptic coefficient of a poled polymer film. Appl. Opt. 1990, 29, 2839–2841. [Google Scholar] [CrossRef]
- Michelotti, F.; Nicolao, G.; Tesi, F.; Bertolotti, M. On the measurement of the electro-optic properties of poled side-chain copolymer films with a modified Teng-Man technique. Chem. Phys. 1999, 245, 311–326. [Google Scholar] [CrossRef]
- Dominici, L.; Michelotti, F.; Whitelegg, S.; Campbell, A.; Bradley, D.D.C. Comparative study of space-charge effects in polymer light emitting diodes by means of reflection electro-optic and electroabsorption techniques. Phys. Rev. B 2004, 69, 054201:1–054201:10. [Google Scholar]
- Yariv, A. Optical Electronics, 4th ed.; Saunders College Publishing: Philadelphia, PA, USA, 1991. [Google Scholar]
- Maker, P.D.; Terhune, R.W.; Nisenhoff, M.; Savage, C.M. Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. Lett. 1962, 8, 21–22. [Google Scholar] [CrossRef]
- Jerphagnon, J.; Kurtz, S.K. Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals. J. Appl. Phys. 1970, 41, 1667–1681. [Google Scholar] [CrossRef]
- Herman, W.N.; Hayden, L.M. Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials. J. Opt. Soc. Am. B 1995, 12, 416–427. [Google Scholar] [CrossRef]
- Bloembergen, N. Nonlinear Optics, 4th ed.; World Scientific Publication Co. Pte. Ltd.: River Edge, NJ, USA, 1996. [Google Scholar]
- Fazio, E.; Ramadan, W.; Belardini, A.; Bosco, A.; Bertolotti, M.; Petris, A.; Vlad, V.I. (2+1)D vortex soliton-like propagation in photorefractive Bi12SiO20 crystals. Phys. Rev. E 2003, 67, 026611:1–026611:8. [Google Scholar]
- Singer, K.D.; Kuzyk, M.G.; Sohn, J.E. Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties. J. Opt. Soc. Am. B 1987, 4, 968–976. [Google Scholar] [CrossRef]
- Harper, A.W.; Sun, S.; Dalton, L.R.; Garner, S.M.; Chen, A.; Kalluri, S.; Steier, W.H.; Robinson, B.H. Translating microscopic optical nonlinearity into macroscopic optical nonlinearity: the role of chromophore chromophore electrostatic interactions. J. Opt. Soc. Am. B 1998, 15, 329–337. [Google Scholar] [CrossRef]
- Cheng, L.T.; Tam, W.; Stevenson, S.H.; Meredith, G.R.; Rikken, G.; Marder, S.R. Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives. J. Phys. Chem. 1991, 95, 10631–10643. [Google Scholar]
- Cheng, L.T.; Tam, W.; Stevenson, S.H.; Meredith, G.R.; Rikken, G.; Marder, S.R. Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences. J. Phys. Chem. 1991, 95, 10643–10652. [Google Scholar] [CrossRef]
- Dalton, L.R.; Steier, W.H.; Robinson, B.H.; Zhang, C.; Ren, A.; Garner, S.; Chen, A.; Londergan, T.; Irwin, L.; Carlson, B.; Fifield, L.; Phelan, G.; Kincaid, C.; Amend, J.; Jen, A. From molecules to opto-chips: Organic electro-optic materials. J. Mater. Chem. 1999, 9, 1905–1920. [Google Scholar] [CrossRef]
- Dalton, L.; Harper, A.; Ren, A.; Wang, F.; Todorova, G.; Chen, J.; Zhang, C.; Lee, M. Polymeric electro-optic modulators: From chromophore design to integration with semiconductor very large scale integration electronics and silica fiber optics. Ind. Eng. Chem. Res. 1999, 38, 8–33. [Google Scholar] [CrossRef]
- Moylan, C.R.; Twieg, R.J.; Lee, V.Y.; Swanson, S.A.; Betterton, K.M.; Miller, R.D. Nonlinear optical chromophores with large hyperpolarizabilities and enhanced thermal stabilities. J. Am. Chem. Soc. 1993, 115, 12599–12600. [Google Scholar] [CrossRef]
- Skinner, I.M.; Garth, S.J. Reconciliation of esu and mksa units in nonlinear optics. Am. J. Phys. 1990, 58, 177–181. [Google Scholar] [CrossRef]
- Blanchard, D.M.; Mitchell, G.R. A comparison of photoinduced poling and thermal poling of azo-dye-doped polymer films for second order nonlinear optical applications. Appl. Phys. Lett. 1993, 63, 2038–2040. [Google Scholar] [CrossRef]
- Bauer-Gogonea, S.; Bauer, S.; Wirges, W.; Gerhard-Multhaupt, R. Pyroelectrical investigation of the dipole orientation in nonlinear optical polymers during and after photoinduced poling. J. Appl. Phys. 1994, 76, 2627–2635. [Google Scholar] [CrossRef]
- Wu, J.W. Birefringent and electro-optic effects in poled polymer films: Steady-state and transient properties. J. Opt. Soc. Am. B 1991, 8, 142–152. [Google Scholar] [CrossRef]
- Michelotti, F.; Toussaere, E. Pulse poling of side-chain and crosslinkable copolymers. J. Appl. Phys. 1997, 82, 5728–5744. [Google Scholar] [CrossRef]
- Brasselet, S.; Zyss, J. Multipolar molecules and multipolar fields: Probing and controlling the tensorial nature of nonlinear molecular media. J. Opt. Soc. Am. B 1998, 15, 257–288. [Google Scholar] [CrossRef]
- Quatela, A.; De Matteis, F.; Casalboni, M.; Stella, F.; Colombo, M.; Zaopo, A. Order relaxation of a poled azo dye in a high Tg, fully aromatic polyimide. J. Appl. Phys. 2007, 101, 023116:1–023116:6. [Google Scholar]
- Scher, H.; Shlesinger, M.F.; Bendler, J.T. Time scale invariance in transport and relaxation. Phys. Today 1991, 44, 26–34. [Google Scholar] [CrossRef]
- Williams, G.; Watts, D.C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1970, 66, 80–85. [Google Scholar] [CrossRef]
- Ghebremichael, F.; Kuzyk, M.G. Optical second-harmonic generation as a probe of the temperature dependence of the distribution of sites in a poly(methyl methacrylate) polymer doped with disperse red 1 azo dye. J. Appl. Phys. 1995, 77, 2896–2901. [Google Scholar] [CrossRef]
- Michelotti, F.; Taggi, V.; Bertolotti, M.; Gabler, T.; Hörhold, H.H.; Bräuer, A. Reflection electro-optical measurements on electroluminescent polymer films: A good tool for investigating charge injection and space charge effects. J. Appl. Phys. 1998, 83, 7886–7895. [Google Scholar]
- Michelotti, F.; Bussi, S.; Dominici, L.; Bertolotti, M.; Bao, Z. Space charge effects in polymer-based light-emitting diodes studied by means of a polarization sensitive electroreflectance technique. J. Appl. Phys. 2002, 91, 5521–5532. [Google Scholar] [CrossRef]
- Miniewicz, A.; Michelotti, F.; Belardini, A. Photoconducting polymer-liquid crystal structure studied by electroreflectance. J. Appl. Phys. 2004, 95, 1141–1147. [Google Scholar] [CrossRef]
- Michelotti, F.; Dominici, L.; Belardini, A. Charge injection and trapping contributions to the electro-optic response of mesoscopic polymer systems. AIP Conf. Proc. 2003, 709, 233–251. [Google Scholar]
- Jespersen, K.G.; Pedersen, T.G.; Johansen, P.M. Electro-optic response of chromophores in a viscoelastic polymer matrix to a combined dc and ac poling field. J. Opt. Soc. Am. B 2003, 20, 2179–2188. [Google Scholar]
- Nagtegaele, P.; Brasselet, E.; Zyss, J. Anisotropy and dispersion of a Pockels tensor: A benchmark for electro-optic organic thin-film assessment. J. Opt. Soc. Am. B 2003, 20, 1932–1936. [Google Scholar] [CrossRef]
- Michelotti, F.; Belardini, A.; Larciprete, M.C.; Bertolotti, M.; Rousseau, A.; Ratsimihety, A.; Schoer, G.; Mueller, J. Measurement of the electro-optic properties of poled polymers at λ = 1.55μm by means of sandwich structures with zinc oxide transparent electrode. Appl. Phys. Lett. 2003, 83, 4477–4479. [Google Scholar]
- Park, D.H.; Lee, C.H.; Herman, W.N. Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures. Opt. Express 2006, 14, 8866–8884. [Google Scholar] [CrossRef]
- Hou, A.; Liu, H.; Sun, J.; Zhang, D.; Yi, M. Measurement of the electro-optic coefficient of polymer thin films with better spatial resolution. Optics & Laser Tech. 2007, 39, 411–414. [Google Scholar]
- Park, D.H.; Luo, J.; Jen, A.K.-Y.; Herman, W.N. Simplified reflection Fabry-Perot method for determination of electro-optic coefficients of poled polymer thin films. Polymers 2011, 3, 1310–1324. [Google Scholar] [CrossRef]
- Michelotti, F.; Belardini, A.; Rousseau, A.; Ratsimihety, A.; Schoer, G.; Muller, J. Use of sandwich structures with ZnO:Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ = 1.55 μm. J. Non-Crystalline Solids 2006, 352, 2339–2342. [Google Scholar] [CrossRef]
- Michelotti, F.; Canali, R.; Dominici, L.; Belardini, A.; Menchini, F.; Schoer, G.; Muller, J. Second order optical nonlinearity of ZnO/ZnO:Al bilayers deposited on glass by low temperature radio frequency sputtering. Appl. Phys. Lett. 2007, 90, 181110:1–181110:3. [Google Scholar]
- Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 1961, 7, 118–119. [Google Scholar] [CrossRef]
- Cattaneo, S.; Kauranen, M. Determination of second-order susceptibility components of thin films by two-beam second-harmonic generation. Opt. Lett. 2003, 28, 1445–1447. [Google Scholar] [CrossRef]
- Larciprete, M.C.; Bovino, F.A.; Giardina, M.; Belardini, A.; Centini, M.; Sibilia, C.; Bertolotti, M.; Passaseo, A.; Tasco, V. Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation. Opt. Lett. 2009, 34, 2189–2191. [Google Scholar] [CrossRef]
- Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoonson, A. Optical activity of anisotropic achiral surfaces. Phys. Rev. Lett. 1996, 77, 1456–1459. [Google Scholar] [CrossRef]
- Belardini, A.; Larciprete, M.C.; Centini, M.; Fazio, E.; Sibilia, C.; Chiappe, D.; Martella, C.; Toma, A.; Giordano, M.; Buatier de Mongeot, F. Circular dichroism in the optical second-harmonic emission of curved gold metal nanowires. Phys. Rev. Lett. 2011, 107, 257401:1–257401:5. [Google Scholar]
- Verbiest, T.; Clays, K.; Rodriguez, V. Second-Order Nonlinear Optical Characterization Techniques. CRC Press: NY, USA, 2009. [Google Scholar]
- Belardini, A.; Pannone, F.; Leahu, G.; Larciprete, M.C.; Centini, M.; Sibilia, C.; Martella, C.; Giordano, M.; Chiappe, D.; Buatier de Mongeot, F. Evidence of anomalous refraction of self-assembled curved gold nanowires. Appl. Phys. Lett. 2012, 100, 251109:1–251109:5. [Google Scholar]
- Palazzesi, C.; Stella, F.; de Matteis, F.; Casalboni, M. In-plane poling characterization of organic electro-optical polymer. J. Appl. Phys. 2010, 107, 113101:1–113101:5. [Google Scholar]
- Park, D.H.; Herman, W.N. Closed-form Maker fringe formulas for poled polymer thin films in multilayer structures. Opt. Express 2012, 20, 173–185. [Google Scholar] [CrossRef]
- Large, M.J.; Kajzar, F.; Raimond, P. Modulation of second harmonic generation in photochromic materials by the application of electric fields and low intensity light. Appl. Phys. Lett. 1998, 73, 3635–3637. [Google Scholar] [CrossRef]
- Belardini, A.; Larciprete, M.C.; Passeri, D.; Michelotti, F.; Ratsimihety, A.; Rousseau, A.; Menchini, F.; Nichelatti, E. Concentration dependence of the optical nonlinearity in extremely doped fluorinated organic copolymers. J. Appl. Phys. 2005, 98, 093521:1–093521:8. [Google Scholar]
- Ahn, S.-W.; Steier, W.H.; Kuo, Y.-H.; Oh, M.-C.; Lee, H.-J.; Zhang, C.; Fetterman, H.R. Integration of electro-optic polymer modulators with low-loss fluorinated polymer waveguides. Opt. Lett. 2002, 27, 2109–2111. [Google Scholar] [CrossRef]
- Belardini, A.; Michelotti, F.; Rousseau, A.; Ratsimihety, A. Temperature stability of the electro-optic response of highly fluorinated side chain organic copolymers. Ferroelectrics 2007, 352, 35–41. [Google Scholar] [CrossRef]
- He, M.; Zhou, Y.; Dai, J.; Liu, R.; Cui, Y.; Zhang, T. Synthesis and nonlinear optical properties of soluble fluorinated polyimides containing hetarylazo chromophores with large hyperpolarizability. Polymer 2009, 50, 3924–3931. [Google Scholar] [CrossRef]
- Shi, Z.; Luo, J.; Huang, S.; Polishak, B.M.; Zhou, X.-H.; Liff, S.; Younkin, T.R.; Block, B.A.; Jen, A.K.-J. Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process. J. Mater. Chem. 2012, 22, 951–959. [Google Scholar]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Belardini, A. Fluorinated and Non-Fluorinated Electro-Optic Copolymers: Determination of the Time and Temperature Stability of the Induced Electro-Optic Coefficient. Appl. Sci. 2012, 2, 682-708. https://doi.org/10.3390/app2040682
Belardini A. Fluorinated and Non-Fluorinated Electro-Optic Copolymers: Determination of the Time and Temperature Stability of the Induced Electro-Optic Coefficient. Applied Sciences. 2012; 2(4):682-708. https://doi.org/10.3390/app2040682
Chicago/Turabian StyleBelardini, Alessandro. 2012. "Fluorinated and Non-Fluorinated Electro-Optic Copolymers: Determination of the Time and Temperature Stability of the Induced Electro-Optic Coefficient" Applied Sciences 2, no. 4: 682-708. https://doi.org/10.3390/app2040682
APA StyleBelardini, A. (2012). Fluorinated and Non-Fluorinated Electro-Optic Copolymers: Determination of the Time and Temperature Stability of the Induced Electro-Optic Coefficient. Applied Sciences, 2(4), 682-708. https://doi.org/10.3390/app2040682