Optimizing Re-planning Operation for Smart House Applying Solar Radiation Forecasting
Abstract
:1. Introduction
2. DC Smart House
2.1. PV Power Output
2.2. Solar Collector
3. Optimization Method
4. Determination of Battery Capacity
5. PV Power Output Forecasting
6. Simulation
6.1. Simulation Conditions
6.2. Simulation Results and Discussions
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Yona, A.; Uchida, K.; Nagaki, Y.; Senjyu, T. Re-planning Operation Method for DC Eco-house Considering Insolation Forecast Error, Proeedings of the Twenty-First Annual Conference of Power & Energy Society, IEE of Japan, Fukuoka, Japan, 1–3 September 2010; 19, pp. 17–23.
- Yona, A.; Uchida, K.; Goya, T.; Senjyu, T.; Funabashi, T.; Kim, C.-H. Application of Weather Reported Data based on Fuzzy Neural Network to Long-Term Power Forecasting for PV System, Proceedings of the International Conference on Electrical Engineering, Harbour Grand Kowloon, Hong Kong, China, 10–14 July 2011.
- Son, Y.S.; Pulkkinen, T.; Moon, K.D.; Kim, C. Home Energy Management System based on Power Line Communication. IEEE Trans. Consum. Electron. 2010, 56, 1380–1386. [Google Scholar]
- Kaizuka, I.; Ohigashi, T.; Matsukawa, H.; Ikki, O. PV Trends in Japan—Progress of the PV Market by New Support Measures, Proceedings of the 35th IEEE Photovoltaic Specialists Conference (PVSC), Honolulu, HI, USA, 20–25 June 2010; pp. 136–141.
- Kimura, O. Why is the Solar Thermal System Diffusion Declining in Japan? Socioeconomic Research Center Report; The Central Research Institute of Electric Power Industry (CRIEPI): Tokyo, Japan, 1 June 2008; pp. 1–53, In Japanese. [Google Scholar]
- Ha Pham, T.T.; Wurtz, F.; Bacha, S. Optimal Operation of a PV Based Multi-source system and Energy Management for Household Application, Proceedings of the IEEE International Conference on Industrial Technology, Gippsland, Australia, 10–13 February 2009.
- Shimada, T.; Kurokawa, K. Insolation Forecasting Using Weather Forecast with Weather Change Patterns. IEEJ Trans. PE. 2007, 127, 1219–12250. [Google Scholar]
- Kakigano, H.; Hashimoto, T.; Matsumura, Y.; Kurotani, T.; Iwamoto, W.; Miura, Y.; Ise, T.; Momose, T.; Hayakawa, H. Fundamental Characteristics of Laboratory Scale Model DC Microgrid to Exchange Electric Power from Distributed Generations Installed in Residential House. IEEJ Trans. PE. 2008, 128, 1099–1110. [Google Scholar]
- Pedrasa, M.A.A.; Spooner, T.D.; MacGill, I.F. Coordinated Scheduling of Residential Distributed Energy Resources to Optimize Smart Home Energy Services. IEEE Trans. Smart Grid 2010, 1, 134–143. [Google Scholar]
- Kanchev, H.; Lu, D.; Colas, F.; Lazarov, V.; Francois, B. Energy Management and Operational Planning of a Microgrid with a PV-Based Active Generator for Smart Grid Applications. IEEE Trans. Ind. Electron. 2011, 58, 4583–4592. [Google Scholar]
- Molderink, A.; Bakker, V.; Bosman, M.G.C.; Hurink, J.L.; Smit, G.J.M. Domestic energy management methodology for optimizing efficiency in Smart Grids, Proceedings of the 2009 IEEE Bucharest Power Tech Conference, Bucharest, Romania, 28 June–2 July 2009; pp. 1–7.
- Adika, C.O.; Wang, L. Autonomous Appliance Scheduling for Household Energy Management. IEEE Trans. Smart Grid 2014, 5, 673–682. [Google Scholar]
- SHARP Corporation, Japan. 2009. Available online: http://www.sharp-solar.com/ accessed on 1 August 2009.
- Fuentes, M.; Nofuentesa, G.; Aguileraa, J.; Talaveraa, D.L.; Castrobet, M. Application and Validation of Algebraic Methods to Predict the Behavior of Crystalline Silicon PV Modules in Mediterranean Climates. Solar Energy 2007, 81, 1396–1408. [Google Scholar]
- Uchida, K.; Senjyu, T.; Urasaki, N.; Yona, A. Installation Effect by Solar Pool System Using Solar Insolation Forecasting, Proceedings of the Twentieth Annual Conference of Power & Energy Society, IEE of Japan, Tokyo, Japan, 18–20 August 2009; 25, pp. 7–12.
- Nehrir, M.H.; Lameres, B.J.; Venkataramanan, G.; Gerez, V.; Alvarado, L.A. An Approach to Evaluate the General Performance of Stand-alone Wind/Photovoltaic Generating Systems. IEEE Trans. Energy Convers 2000, 15, 433–439. [Google Scholar]
- Cossi, A.M.; Romero, R.; Mantovani, J.R.S. Planning and Projects of Secondary Electric Power Distribution Systems. IEEE Trans. Power Syst 2009, 24, 1599–1608. [Google Scholar]
- Glover, F. Future Paths for Integer Programming and Links to Artificial Intelligence. Comput. Oper. Res. 1986, 13, 533–549. [Google Scholar]
- Okinawa Electric Power Company, Japan. 2009. Available online: http://www.okiden.co.jp/english/index.html accessed on 1 August 2009.
- Elman, J.L. Finding structure in time. Cogn. Sci. 1990, 14, 179–221. [Google Scholar]
- Kermanshahi, B. Recurrent neural network for forecasting next 10 years loads of nine Japanese utilities. Neurocomputing 1998, 23, 125–133. [Google Scholar]
- JMBC (Japan Meteorological Business Support Center), Weather Data [CD-ROM]; JMBC (Japan Meteorological Business Support Center): Tokyo, Japan, 2005.
Equipments | Capacities |
---|---|
Rated power output of PV | 3.5 kW |
Rated output of heat pump system | 4.5 kW/1.5 kW |
Hot-water storage tank | 370 L |
Total Storage battery capacity (lithium-ion type) | 25 kWh |
Inverter capacity (bi-directional type) | 6 kW |
Each case | case 1 | case 2 | case 3 |
---|---|---|---|
Operational cost [YEN/day] | 329.90 | 392.36 | 344.28 |
Electric power selling [kWh/day] | 0.68 | 1.40 | 0.88 |
Electric power buying [kWh/day] | 30.66 | 31.05 | 31.73 |
Generated electric power [kWh/day] | 2.66 | 2.66 | 2.66 |
Electric power load [kWh/day] | 24.04 | 24.04 | 24.04 |
Heat load [kWh/day] | 4.85 | 4.65 | 4.83 |
Electric power loss [kWh/day] | 3.75 | 3.62 | 4.64 |
Forecast errors [kWh/day] | — | 1.18 | 0.77 |
Percentages of forecast errors | (44.3%) | (29.1%) |
Each case | case 1 | case 2 | case 3 |
---|---|---|---|
Operational cost [YEN/day] | −291.85 | −252.62 | −271.61 |
Electric power selling [kWh/day] | 15.48 | 14.30 | 15.51 |
Electric power buying [kWh/day] | 26.35 | 24.75 | 27.19 |
Generated electric power [kWh/day] | 19.20 | 19.20 | 19.20 |
Electric power load [kWh/day] | 24.04 | 24.04 | 24.04 |
Heat load [kWh/day] | 0.62 | 0.62 | 0.62 |
Electric power loss [kWh/day] | 5.41 | 4.99 | 6.22 |
Forecast errors [kWh/day] | — | 4.36 | 2.61 |
Percentages of forecast errors | (22.7%) | (13.6%) |
Month | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Mean generated electric power [kWh/day] | 8.08 | 7.33 | 12.76 | 16.02 | 15.26 | 15.02 |
Mean forecast errors [kWh/day] (case 2) | 2.96 | 2.97 | 3.68 | 3.99 | 4.45 | 4.45 |
Percentages of forecast errors [%] (case 2) | 36.60 | 40.50 | 28.88 | 24.93 | 29.17 | 29.62 |
Mean forecast errors [kWh/day] (case 3) | 2.00 | 1.47 | 1.03 | 1.59 | 1.67 | 1.43 |
Percentages of forecast errors [%] (case 3) | 24.79 | 20.08 | 8.06 | 9.90 | 10.91 | 9.50 |
Month | 7 | 8 | 9 | 10 | 11 | 12 |
Mean generated electric power [kWh/day] | 21.58 | 18.51 | 17.55 | 15.02 | 10.85 | 8.62 |
Mean forecast errors [kWh/day] (case 2) | 4.78 | 4.82 | 4.53 | 3.89 | 3.50 | 2.81 |
Percentages of forecast errors [%] (case 2) | 22.16 | 26.03 | 25.81 | 25.90 | 32.28 | 32.61 |
Mean forecast errors [kWh/day] (case 3) | 1.19 | 1.65 | 2.27 | 1.77 | 1.51 | 1.15 |
Percentages of forecast errors [%] (case 3) | 5.54 | 8.94 | 12.94 | 11.76 | 13.89 | 13.39 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yona, A.; Senjyu, T.; Funabashi, T.; Mandal, P.; Kim, C.-H. Optimizing Re-planning Operation for Smart House Applying Solar Radiation Forecasting. Appl. Sci. 2014, 4, 366-379. https://doi.org/10.3390/app4030366
Yona A, Senjyu T, Funabashi T, Mandal P, Kim C-H. Optimizing Re-planning Operation for Smart House Applying Solar Radiation Forecasting. Applied Sciences. 2014; 4(3):366-379. https://doi.org/10.3390/app4030366
Chicago/Turabian StyleYona, Atsushi, Tomonobu Senjyu, Toshihisa Funabashi, Paras Mandal, and Chul-Hwan Kim. 2014. "Optimizing Re-planning Operation for Smart House Applying Solar Radiation Forecasting" Applied Sciences 4, no. 3: 366-379. https://doi.org/10.3390/app4030366
APA StyleYona, A., Senjyu, T., Funabashi, T., Mandal, P., & Kim, C. -H. (2014). Optimizing Re-planning Operation for Smart House Applying Solar Radiation Forecasting. Applied Sciences, 4(3), 366-379. https://doi.org/10.3390/app4030366