Symmetry-Related Electromagnetic Properties of Resonator-Loaded Transmission Lines and Applications
Abstract
:1. Introduction
2. Theory and Principle
2.1. Lines Loaded with a Single Symmetric Resonator (Resonance-Based Structures)
2.2. Lines Loaded with a Pair of Resonators (Frequency-Splitting Structures)
3. Circuit Models
3.1. Differential Microstrip Lines Loaded with CSRRs
3.2. CPWs Loaded with ELC Resonators
θ (Degrees) | C (pF) | L (nH) | Ce (pF) | Le (nH) | M (nH) |
---|---|---|---|---|---|
30 | 5.86 | 5.95 | 3.09 | 25.6 | 0.94 |
60 | 5.73 | 6.22 | 3.09 | 25.6 | 1.91 |
90 | 5.55 | 6.57 | 3.06 | 25.6 | 2.76 |
3.3. CPWs Loaded with Pairs of Coupled SRRs
d’ (mm) | L (nH) | C (pF) | Cr (pF) | Lr (nH) | M (nH) | M’ (nH) |
---|---|---|---|---|---|---|
0.105 | 1.82 | 1.58 | 0.44 | 6.85 | 0.82 | 1.74 |
0.305 | 1.86 | 1.58 | 0.44 | 6.85 | 0.82 | 1.29 |
0.505 | 1.84 | 1.57 | 0.43 | 6.85 | 0.81 | 1.02 |
0.755 | 1.85 | 1.55 | 0.43 | 6.85 | 0.80 | 0.80 |
4. Applications
4.1. Differential Lines and Balanced Filters with Common-Mode Suppression
4.2. Angular Displacement and Velocity Sensors
4.3. Differential Permittivity Sensors and Comparators
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Makimoto, M.; Yamashita, S. Compact bandpass filters using stepped impedance resonators. Proc. IEEE 1979, 67, 16–19. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef]
- Sauviac, B.; Simovski, C.R.; Tretyakov, S.A. Double split-ring resonators: analytical modeling and numerical simulations. Electromagnetics 2004, 24, 317–338. [Google Scholar] [CrossRef]
- Somovski, C.R.; Sauviac, B. Role of wave interaction of wires and split-ring resonators for the losses in a left-handed composite. Phys. Rev. E 2004, 70, 46607. [Google Scholar] [CrossRef]
- Safwat, A.M.E.; Tretyakov, S.A.; Räisänen, A. Dual bandstop resonator using combined split ring resonator and defected ground structure. Microw. Opt. Tech. Lett. 2007, 49, 1249–1253. [Google Scholar] [CrossRef]
- Baena, J.D.; Marqués, R.; Medina, F.; Martel, J. Artificial magnetic metamaterial design by using spiral resonators. Phys. Rev. B 2004, 69, 014402. [Google Scholar] [CrossRef]
- Falcone, F.; Lopetegi, T.; Baena, J.D.; Marqués, R.; Martín, F.; Sorolla, M. Effective negative-ε stop-band microstrip lines based on complementary split ring resonators. IEEE Microwave Wireless Compon. Lett. 2004, 14, 280–282. [Google Scholar] [CrossRef]
- Ahn, D.; Park, J.-S.; Kim, C.-S.; Kim, J.; Qian, Y.; Itoh, T. A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Trans. Microwave Theory Tech. 2001, 49, 86–93. [Google Scholar] [CrossRef]
- Lim, J.-S.; Kim, C.-S.; Lee, Y.-T.; Ahn, D.; Nam, S. A spiral-shaped defected ground structure for coplanar waveguide. IEEE Microwave Wireless Compon. Lett. 2002, 12, 330–332. [Google Scholar] [CrossRef]
- Safwat, A.M.E.; Podevin, F.; Ferrari, P.; Vilcot, A. Tunable bandstop defected ground structure resonator using reconfigurable dumbbell-shaped coplanar waveguide. IEEE Trans. Microwave Theory Tech. 2006, 54, 3559–3564. [Google Scholar] [CrossRef]
- Safwat, A.M.E.; Tretyakov, S.; Räisänen, A.V. Defected ground and patch-loaded planar transmission lines. IET Microw. Antennas Propag. 2009, 3, 195–204. [Google Scholar] [CrossRef]
- Bonache, J.; Martín, F.; Gil, I.; García-García, J.; Marqués, R.; Sorolla, M. Microstrip bandpass filters with wide bandwidth and compact dimensions. Microwave Opt. Technol. Lett. 2005, 46, 343–346. [Google Scholar] [CrossRef]
- Wu, B.; Liang, C.-H.; Li, Q.; Qin, P.-Y. Novel dual-band filter incorporating defected SIR and microstrip SIR. IEEE Microwave Wireless Compon. Lett. 2008, 18, 392–394. [Google Scholar] [CrossRef]
- García-García, J.; Martín, F.; Falcone, F.; Bonache, J.; Baena, J.D.; Gil, I.; Amat, E.; Lopetegi, T.; Laso, M.A.G.; Marcotegui-Iturmendi, J.A.; et al. Microwave filters with improved stop band based on sub-wavelength resonators. IEEE Trans. Microwave Theory Tech. 2005, 53, 1997–2006. [Google Scholar] [CrossRef]
- Gil, M.; Bonache, J.; Martín, F. Metamaterial filters: A review. Metamaterials 2008, 2, 186–197. [Google Scholar] [CrossRef]
- Marqués, R.; Martín, F.; Sorolla, M. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications; John Wiley: New York, NY, USA, 2008. [Google Scholar]
- Mandel, C.; Kubina, B.; Schüßler, M.; Jakoby, R. Passive chipless wireless sensor for two-dimensional displacement measurement. In Proceedings of the Microwave Conference (EuMC), 2011 41st European, Manchester, UK, 10–13 October 2011; pp. 79–82.
- Puentes, M.; Weiss, C.; Schüßler, M.; Jakoby, R. Sensor array based on split ring resonators for analysis of organic tissues. In Proceedings of the Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International, Baltimore, MD, USA, 5–10 June 2011.
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Novel sensors based on the symmetry properties of split ring resonators (SRRs). Sensors 2011, 11, 7545–7553. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, S.; Sun, H. Metamaterials application in sensing. Sensors 2012, 12, 2742–2765. [Google Scholar] [CrossRef] [PubMed]
- Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-based microfluidic sensor for dielectric characterization. Sens. Actuat. A Phys. 2013, 189, 233–237. [Google Scholar] [CrossRef]
- Preradovic, S.; Balbin, I.; Karmakar, N.C.; Swiegers, G.F. Multiresonator-based chipless RFID system for low-cost item tracking. IEEE Trans. Microwave Theory Tech. 2009, 57, 1411–1419. [Google Scholar] [CrossRef]
- Preradovic, S.; Chandra-Karmakar, N. Chipless RFID: Bar code of the future. IEEE Microwave Mag. 2010, 11, 87–98. [Google Scholar] [CrossRef]
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Modeling split ring resonator (SRR) and complementary split ring resonator (CSRR) loaded transmission lines exhibiting cross polarization effects. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 178–181. [Google Scholar] [CrossRef]
- Marqués, R.; Medina, F.; Rafii-El-Idrissi, R. Role of bi-anisotropy in negative permeability and left handed metamaterials. Phys. Rev. B 2002, 65, 144441. [Google Scholar] [CrossRef]
- Su, L.; Naqui, J.; Mata-Contreras, J.; Martín, F. Modeling metamaterial transmission lines loaded with pairs of coupled split ring resonators. IEEE Anten. Wirel. Propag. Lett. 2015, 14, 68–71. [Google Scholar] [CrossRef]
- Naqui, J.; Fernández-Prieto, A.; Durán-Sindreu, M.; Mesa, F.; Martel, J.; Medina, F.; Martín, F. Common mode suppression in microstrip differential lines by means of complementary split ring resonators: Theory and applications. IEEE Trans. Microwave Theory Tech. 2012, 60, 3023–3034. [Google Scholar] [CrossRef]
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Selective mode suppression in coplanar waveguides using metamaterial resonators. Appl. Phys. A-Mater. Sci. Process 2012, 109, 1053–1058. [Google Scholar] [CrossRef]
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Selective mode suppression in microstrip differential lines by means of electric-LC (ELC) and magnetic-LC (MLC) resonators. Appl. Phys. A: Mater. Sci. Process. 2014, 115, 637–643. [Google Scholar] [CrossRef]
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Alignment and position sensors based on split ring resonators. Sensors 2012, 12, 11790–11797. [Google Scholar] [CrossRef]
- Horestani, A.; Fumeaux, C.; Al-Sarawi, S.; Abbott, D. Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sens. J. 2013, 13, 1153–1160. [Google Scholar] [CrossRef]
- Horestani, A.K.; Naqui, J.; Abbott, D.; Fumeaux, C.; Martiín, F. Two-dimensional displacement and alignment sensor based on reflection coefficients of open microstrip lines loaded with split ring resonators. Electron. Lett. 2014, 50, 620–622. [Google Scholar] [CrossRef]
- Naqui, J.; Martín, F. Mechanically reconfigurable microstrip lines loaded with stepped impedance resonators and potential applications. Int. J. Antennas Propag. 2014. [Google Scholar] [CrossRef]
- Naqui, J.; Damm, C.; Wiens, A.; Jakoby, R.; Su, L.; Martín, F. Transmission lines loaded with pairs of magnetically coupled stepped impedance resonators (SIRs): Modeling and application to microwave sensors. In Proceedings of the Microwave Symposium (IMS), 2014 IEEE MTT-S International, Tampa, FL, USA, 1–6 June 2014.
- Horestani, A.K.; Naqui, J.; Shaterian, Z.; Abbott, D.; Fumeaux, C.; Martín, F. Two-dimensional alignment and displacement sensor based on movable broadside-coupled split ring resonators. Sens. Actuat. A Phys. 2014, 210, 18–24. [Google Scholar] [CrossRef]
- Naqui, J.; Fernández-Prieto, A.; Durán-Sindreu, M.; Selga, J.; Medina, F.; Mesa, F.; Martín, F. Split rings-based differential transmission lines with common-mode suppression. In Proceedings of the Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International, Baltimore, MD, USA, 5–10 June 2011.
- Baena, J.D.; Bonache, J.; Martín, F.; Marqués, R.; Falcone, F.; Lopetegi, T.; Laso, M.A.G.; García, J.; Gil, I.; Flores-Portillo, M.; et al. Equivalent circuit models for split ring resonators and complementary split rings resonators coupled to planar transmission lines. IEEE Trans. Microwave Theory Tech. 2005, 53, 1451–1461. [Google Scholar] [CrossRef]
- Bonache, J.; Gil, M.; Gil, I.; Garcia-García, J.; Martín, F. On the electrical characteristics of complementary metamaterial resonators. IEEE Microwave Wireless Compon. Lett. 2006, 16, 543–545. [Google Scholar]
- Schurig, D.; Mock, J.J.; Smith, D.R. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 2006, 88, 041109. [Google Scholar] [CrossRef]
- Naqui, J.; Durán-Sindreu, M.; Martín, F. Transmission lines loaded with bisymmetric resonators and applications. In Proceedings of the Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International, Seattle, WA, USA, 2–7 June 2013.
- Naqui, J.; Martín, F. Transmission lines loaded with bisymmetric resonators and their application to angular displacement and velocity sensors. IEEE Trans. Microwave Theory Tech. 2013, 61, 4700–4713. [Google Scholar] [CrossRef]
- Aznar, F.; Bonache, J.; Martín, F. Improved circuit model for left handed lines loaded with split ring resonators. Appl. Phys. Lett. 2008, 92, 043512. [Google Scholar] [CrossRef]
- Aznar, F.; Gil, M.; Bonache, J.; Baena, J.D.; Jelinek, L.; Marqués, R.; Martín, F. Characterization of miniaturized metamaterial resonators coupled to planar transmission lines. J. Appl. Phys. 2008, 104, 114501. [Google Scholar] [CrossRef]
- Hong, J.-S.; Lancaster, M.J. Microstrip Filters for RF/Microwave Applications; John Wiley: New York, NY, USA, 2001. [Google Scholar]
- Bilotti, F.; Toscano, A.; Vegni, L.; Aydin, K.; Alici, K.; Ozbay, E. Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions. IEEE Trans. Microwave Theory Tech. 2007, 55, 2865–2873. [Google Scholar] [CrossRef] [Green Version]
- Ramaccia, D.; di Palma, L.; Ates, D.; Ozbay, E.; Toscano, A.; Bilotti, F. Analytical model of connected bi-omega: Robust particle for the selective power transmission through sub-wavelength apertures. IEEE Trans. Ant. Prop. 2014, 62, 2093–2101. [Google Scholar] [CrossRef]
- Naqui, J.; Martín, F. Angular displacement and velocity sensors based on electric-LC (ELC) loaded microstrip lines. IEEE Sens. J. 2014, 14, 939–940. [Google Scholar] [CrossRef]
- Horestani, A.; Abbott, D.; Fumeaux, C. Rotation sensor based on horn-shaped split ring resonator. IEEE Sens. J. 2013, 13, 3014–3015. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. Metamaterial-inspired rotation sensor with wide dynamic range. IEEE Sens. J. 2014, 14, 2609–2614. [Google Scholar] [CrossRef]
- Sipal, V.; Narbudowicz, A.; Ammann, M.J. Contactless measurement of angular velocity using circularly polarized antennas. IEEE Sens. J. 2014. [Google Scholar] [CrossRef]
- Naqui, J.; Su, L.; Mata, J.; Martín, F. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors. J. Magn. Magn. Mater. 2015, 383, 144–151. [Google Scholar] [CrossRef]
- Boybay, M.S.; Ramahi, O.M. Material characterization using complementary split-ring resonators. IEEE Trans. Instrum. Measur. 2012, 61, 3039–3046. [Google Scholar] [CrossRef]
- Albishi, A.M.; Ramahi, O.M.; Boybay, M.S. Complementary split-ring resonator as a high sensitivity sensor. In Proceedings of the Antennas and Propagation Society International Symposium (APSURSI), 2012 IEEE, Chicago, IL, USA, 8–14 July 2012.
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 2014, 14, 1345–1351. [Google Scholar] [CrossRef]
- Abduljabar, A.; Rowe, D.; Porch, A.; Barrow, D. Novel microwave microfluidic sensor using a microstrip split-ring resonator. IEEE Trans. Microwave Theory Tech. 2014, 62, 679–688. [Google Scholar] [CrossRef]
- Chretiennot, T.; Dubuc, D.; Grenier, K. A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions. IEEE Trans. Microwave Theory Tech. 2013, 61, 972–978. [Google Scholar] [CrossRef]
- Grenier, K.; Dubuc, D.; Chen, T.; Artis, F.; Chretiennot, T.; Poupot, M.; Fournie, J. Recent advances in microwave-based dielectric spectroscopy at the cellular level for cancer investigations. IEEE Trans. Microwave Theory Tech. 2013, 61, 2023–2030. [Google Scholar] [CrossRef]
- Chen, T.; Artis, F.; Dubuc, D.; Fournie, J.J.; Poupot, M.; Grenier, K. Microwave biosensor dedicated to the dielectric spectroscopy of a single alive biological cell in its culture medium. In Proceedings of the Microwave Symposium Digest (IMS), 2013 IEEE MTT-S International, Seattle, WA, USA, 2–7 June 2013.
- Chretiennot, T.; Dubuc, D.; Grenier, K. Optimized electromagnetic interaction microwave resonator/microfluidic channel for enhanced liquid bio-sensor. In Proceedings of the Microwave Conference (EuMC), 2013 European, Nuremberg, Germany, 6–10 October 2013; pp. 464–467.
- Artis, F.; Dubuc, D.; Fournie, J.J.; Poupot, M.; Grenier, K. Microwave dielectric bio-sensing for precise and repetitive living cells suspension analysis. In Proceedings of the Microwave Conference (EuMC), 2013 European, Nuremberg, Germany, 6–10 October 2013; pp. 468–470.
- Chretiennot, T.; Dubuc, D.; Grenier, K. Double stub resonant biosensor for glucose concentrations quantification of multiple aqueous solutions. In Proceedings of the Microwave Symposium (IMS), 2014 IEEE MTT-S International, Tampa, FL, USA, 1–6 June 2014.
- Puentes, M. Planar Metamaterial Based Microwave Sensor Arrays for Biomedical Analysis and Treatment; Springer: New York, NY, USA, 2014. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naqui, J.; Su, L.; Mata, J.; Martín, F. Symmetry-Related Electromagnetic Properties of Resonator-Loaded Transmission Lines and Applications. Appl. Sci. 2015, 5, 88-113. https://doi.org/10.3390/app5020088
Naqui J, Su L, Mata J, Martín F. Symmetry-Related Electromagnetic Properties of Resonator-Loaded Transmission Lines and Applications. Applied Sciences. 2015; 5(2):88-113. https://doi.org/10.3390/app5020088
Chicago/Turabian StyleNaqui, Jordi, Lijuan Su, Javier Mata, and Ferran Martín. 2015. "Symmetry-Related Electromagnetic Properties of Resonator-Loaded Transmission Lines and Applications" Applied Sciences 5, no. 2: 88-113. https://doi.org/10.3390/app5020088
APA StyleNaqui, J., Su, L., Mata, J., & Martín, F. (2015). Symmetry-Related Electromagnetic Properties of Resonator-Loaded Transmission Lines and Applications. Applied Sciences, 5(2), 88-113. https://doi.org/10.3390/app5020088