Potential Application of Fluorescence Imaging for Assessing Fecal Contamination of Soil and Compost Maturity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Hyperspectral Imaging System
3. Results and Discussion
3.1. Fluorescence Characteristics of Animal Feces and Soil
3.2. Discrimination of Fecal Matter on Soil and in Mixtures with Soil
3.3. Identification of Fecal Presence as Related to Degree of Compost Fermentation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Vital Signs: Incidence and Trends of Infection with Pathogens Transmitted Commonly Through Food—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 1996–2010. Morb. Mortal. Wkly. Rep. 2011, 60, 749–755. [Google Scholar]
- D’lima, C. Produce Related Outbreaks and illnesses 1996 to 2010—FDA Memorandum to the Record re Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption. Available online: http://www.regulations.gov/document?D=FDA-2011-N-0921-18884 (accessed on 25 August 2016).
- Doyle, M.P.; Erickson, M.C. Summer meeting 2007—The problems with fresh produce: An overview. J. Appl. Microbiol. 2008, 105, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Warriner, K.; Huber, A.; Namvar, A.; Fan, W.; Dunfield, K. Recent Advances in the Microbial Safety of Fresh Fruits and Vegetables. Adv. Food Nutr. Res. 2009, 57, 155–208. [Google Scholar] [PubMed]
- Centers for Disease Control and Prevention. CDC Estimates of Foodborne Illness in the United States CDC 2011 Estimates. Cent. Dis. Control Prev. 2011, 68, 3–4. [Google Scholar]
- Islam, M.; Morgan, J.; Doyle, M.P.; Phatak, S.C.; Millner, P.; Jiang, X. Persistence of Salmonella enterica serovar typhimurium on lettuce and parsley and in soils on which they were grown in fields treated with contaminated manure composts or irrigation water. Foodborne Pathog. Dis. 2004, 1, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Buck, J.W.; Walcott, R.R.; Beuchat, L.R. Recent Trends in Microbiological Safety of Fruits and Vegetables. Plant Health Prog. 2003, 10. [Google Scholar] [CrossRef]
- Doyle, M.E.; Archer, J.; Kaspar, C.W.; Weiss, R. Human Illness Caused by E. coli O157:H7 from Food and Non-Food Sources; Food Research Institute, University of Wisconsin: Madison, WI, USA, 2006. [Google Scholar]
- Zaleski, K.J.; Josephson, K.L.; Gerba, C.P.; Pepper, I.L. Survival, Growth, and Regrowth of Enteric Indicator and Pathogenic Bacteria in Biosolids, Compost, Soil, and Land Applied Biosolids. J. Residuals Sci. Technol. 2005, 2, 49–63. [Google Scholar]
- Stephens, T.P.; Loneragan, G.H.; Thompson, T.W.; Sridhara, A.; Branham, L.A.; Pitchiah, S.; Brashears, M.M. Distribution of Escherichia coli O157 and Salmonella on hide surfaces, the oral cavity, and in feces of feedlot cattle. J. Food Prot. 2007, 70, 1346–1349. [Google Scholar]
- Mandrell, R.E. Enteric Human Pathogens Associated with Fresh Produce: Sources, Transport, and Ecology. In Microbial Safety of Fresh Produce; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 1–41. [Google Scholar]
- Jay, M.T.; Cooley, M.; Carychao, D.; Wiscomb, G.W.; Sweitzer, R.A.; Crawford-Miksza, L.; Farrar, J.A.; Lau, D.K.; O’connell, J.; Millington, A.; et al. Escherichia coli O157:H7 in Feral Swine near Spinach Fields and Cattle, Central California Coast 1. Emerg. Infect. Dis. 2007, 13, 1908–1911. [Google Scholar] [CrossRef] [PubMed]
- Reynnells, R.; Ingram, D.T.; Roberts, C.; Stonebraker, R.; Handy, E.T.; Felton, G.; Vinyard, B.T.; Millner, P.D.; Sharma, M. Comparison of U.S. Environmental Protection Agency and U.S. Composting Council Microbial Detection Methods in Finished Compost and Regrowth Potential of Salmonella spp. and Escherichia coli O157:H7 in Finished Compost. Foodborne Pathog. Dis. 2014, 11, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Teplitski, M.; George, A.; Hochmuth, G. Salmonella and Pathogenic E. coli in the Crop Production Environment: Potential Sources, Survival, Domestic and Wild Animals as Vectors of Human Pathogens Surveys of Microbiological Water Quality Source of Human Pathogens. Univ. Fla. IFAS Ext. 2012, SL375, 1–3. [Google Scholar]
- Gorski, L.; Parker, C.T.; Liang, A.; Cooley, M.B.; Jay-Russell, M.T.; Gordus, A.G.; Atwill, E.R.; Mandrell, R.E. Prevalence, distribution, and diversity of Salmonella enterica in a major produce region of California. Appl. Environ. Microbiol. 2011, 77, 2734–2748. [Google Scholar] [CrossRef] [PubMed]
- Wichuk, K.M.; McCartney, D. A review of the effectiveness of current time–temperature regulations on pathogen inactivation during composting. J. Environ. Eng. Sci. 2007, 6, 573–586. [Google Scholar] [CrossRef]
- Department of Health & Human Services. Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption. In Fed. Regist.; 2015. Available online: https://www.gpo.gov/fdsys/pkg/FR-2015-11-27/pdf/2015-28159.pdf (accessed on 25 August 2016). [Google Scholar]
- Deak, T. Testing Methods in Food Microbiology. Food Qual. Stand. 2008, III, 23–45. [Google Scholar]
- Zhao, X.; Lin, C.-W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Dale, L.M.; Thewis, A.; Boudry, C.; Rotar, I.; Dardenne, P.; Baeten, V.; Pierna, J.A.F. Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review. Appl. Spectrosc. Rev. 2013, 48, 142–159. [Google Scholar] [CrossRef]
- Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Park, B.; Windham, W.R.; Lawrence, K.C.; Smith, D.P. Contaminant Classification of Poultry Hyperspectral Imagery using a Spectral Angle Mapper Algorithm. Biosyst. Eng. 2007, 96, 323–333. [Google Scholar] [CrossRef]
- Pu, Y.Y.; Feng, Y.Z.; Sun, D.W. Recent progress of hyperspectral imaging on quality and safety inspection of fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 176–188. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review—Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013, 19, 15–28. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Hyperspectral Imaging Technology: A Non-Destructive Tool for Food Quality and Safety Evaluation and Inspection. In Advances in Food Process Engineering Research and Applications; Springer US: New York, NY, USA, 2013; pp. 581–606. [Google Scholar]
- Huang, H.; Liu, L.; Ngadi, M.O. Recent developments in hyperspectral imaging for assessment of food quality and safety. Sensors 2014, 14, 7248–7276. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Lefcourt, A.M.; Chen, Y.-R. Optimal fluorescence excitation and emission bands for detection of fecal contamination. J. Food Prot. 2003, 66, 1198–1207. [Google Scholar] [PubMed]
- Kim, M.S.; Lefcourt, A.M.; Chao, K.; Chen, Y.R.; Kim, I.; Chan, D.E. Multispectral Detection of Fecal Contamination on Apples based on Hyperspectral Imagery: Part I. Application of Visible and Near-Infrared Refrectance Imaging. Trans. ASAE 2002, 45, 2027–2037. [Google Scholar]
- Kim, M.S.; Lefcourt, A.M.; Chen, Y.R.; Kim, I.; Chan, D.E.; Chao, K. Multispectral Detection of Fecal Contamination on Apples based on Hyperspectral Imagery: Part II. Application of Hyperspectral Fluorescence Imaging. Trans. ASAE 2002, 45, 2039–2047. [Google Scholar]
- Kim, M.S.; Lee, K.; Chao, K.; Lefcourt, A.M.; Jun, W.; Chan, D.E. Multispectral line-scan imaging system for simultaneous fluorescence and reflectance measurements of apples: Multitask apple inspection system. Sens. Instrum. Food Qual. Saf. 2008, 2, 123–129. [Google Scholar] [CrossRef]
- Vargas, A.M.; Kim, M.S.; Tao, Y.; Lefcourt, A.M.; Chen, Y.R.; Luo, Y.; Song, Y.; Buchanan, R. Detection of fecal contamination on cantaloupes using hyperspectral fluorescence imagery. J. Food Sci. 2005, 70, E471–E476. [Google Scholar] [CrossRef]
- Romaniello, R.; Peri, G.; Leone, A. Fluorescence hyper-spectral imaging to detecting faecal contamination on fresh tomatoes. J. Agric. Eng. 2016, 47, 7–11. [Google Scholar] [CrossRef]
- Everard, C.D.; Kim, M.S.; Lee, H. A comparison of hyperspectral reflectance and fluorescence imaging techniques for detection of contaminants on spinach leaves. J. Food Eng. 2014, 143, 139–145. [Google Scholar] [CrossRef]
- Kang, S.; Lee, K.; Son, J.; Kim, M.S. Detection of fecal contamination on leafy greens by hyperspectral imaging. Procedia Food Sci. 2011, 1, 953–959. [Google Scholar] [CrossRef]
- Lee, H.; Everard, C.D.; Kang, S.; Cho, B.K.; Chao, K.; Chan, D.E.; Kim, M.S. Multispectral fluorescence imaging for detection of bovine faeces on Romaine lettuce and baby spinach leaves. Biosyst. Eng. 2014, 127, 125–134. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.B.; Oja, V.; Laisk, A. Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis. Photosynth. Res. 2001, 70, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Lannan, A.P.; Erich, M.S.; Ohno, T. Compost feedstock and maturity level affect soil response to amendment. Biol. Fertil. Soils 2013, 49, 273–285. [Google Scholar] [CrossRef]
- Brost, R. Biosolids Management Handbook. Available online: https://www.epa.gov/sites/production/files/documents/handbook1.pdf (accessed on 25 August 2016).
- USC Council. Test methods for the examination of composting and compost. Rokonkoma, NY, USA, 2002. Available online: http://compostingcouncil.org/wp/wp-content/plugins/wp-pdfupload/pdf/34/TMECC%20Purpose,%20Composting%20Process.pdf (accessed on 15 August 2016).
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, H.; Lee, H.; Kim, S.; Kim, D.; Lefcourt, A.M.; Chan, D.E.; Chung, S.H.; Kim, M.S. Potential Application of Fluorescence Imaging for Assessing Fecal Contamination of Soil and Compost Maturity. Appl. Sci. 2016, 6, 243. https://doi.org/10.3390/app6090243
Cho H, Lee H, Kim S, Kim D, Lefcourt AM, Chan DE, Chung SH, Kim MS. Potential Application of Fluorescence Imaging for Assessing Fecal Contamination of Soil and Compost Maturity. Applied Sciences. 2016; 6(9):243. https://doi.org/10.3390/app6090243
Chicago/Turabian StyleCho, Hyunjeong, Hoonsoo Lee, Sungyoun Kim, Dongho Kim, Alan M. Lefcourt, Diane E. Chan, Soo Hyun Chung, and Moon S. Kim. 2016. "Potential Application of Fluorescence Imaging for Assessing Fecal Contamination of Soil and Compost Maturity" Applied Sciences 6, no. 9: 243. https://doi.org/10.3390/app6090243
APA StyleCho, H., Lee, H., Kim, S., Kim, D., Lefcourt, A. M., Chan, D. E., Chung, S. H., & Kim, M. S. (2016). Potential Application of Fluorescence Imaging for Assessing Fecal Contamination of Soil and Compost Maturity. Applied Sciences, 6(9), 243. https://doi.org/10.3390/app6090243