Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Crystal Growth of ZrX2
Appendix B. Thin Layers of ZrX2 Obtained by Mechanical Exfoliation
Appendix C. Raman Spectra
Thickness (±1 Layer) | Eg | * | A1g | ||||||
---|---|---|---|---|---|---|---|---|---|
Position (cm−1) | Intensity (Counts/s) | FWHM (cm−1) | Position (cm−1) | Intensity (Counts/s) | FWHM (cm−1) | Position (cm−1) | Intensity (Counts/s) | FWHM (cm−1) | |
Bulk | 249.1 ± 0.3 | 8.5 | 22 ± 2 | 319.4 ± 0.4 | 55.9 | 7.6 ± 0.4 | 333.7 ± 0.3 | 89.5 | 20.8 ± 1.0 |
42 L | 249.2 ± 0.2 | 2.4 | 12.5 ± 0.6 | 318.9 ± 0.3 | 13.1 | 7.6 ± 0.4 | 332.45 ± 0.15 | 20.5 | 23.7 ± 0.8 |
17 L | 248.5 ± 0.5 | 1.2 | 22 ± 6 | 319.6 ± 0.4 | 4.8 | 7.9 ± 0.4 | 332.02 ± 0.16 | 6.6 | 23.5 ± 0.8 |
13 L | 245.8 ± 0.9 | 1.0 | 200 ± 30 1 | 319.6 ± 0.2 | 4.7 | 7.0 ± 0.1 | 331.99 ± 0.19 | 6.4 | 24.3 ± 0.8 |
4 L | - | - | - | 319 ± 2 | 1.2 | 10 ± 20 1 | 330.9 ± 1.3 | 1.4 | 22 ± 4 |
3 L | - | - | - | - | - | - | 331.9 ± 1.3 | 1.3 | 140 ± 180 1 |
Thickness (±1 Layer) | Eg | * | A1g | ||||||
---|---|---|---|---|---|---|---|---|---|
Position (cm−1) | Intensity (Counts/s) | FWHM (cm−1) | Position (cm−1) | Intensity (Counts/s) | FWHM (cm−1) | Position (cm−1) | Intensity (counts/s) | FWHM (cm−1) | |
108 L | 249.84 ± 0.17 | 6.1 | 18.3 ± 1.0 | 320.5 ± 0.5 | 42.5 | 10.1 ± 1.2 | 334.5 ± 0.2 | 63.6 | 23.2 ± 1.0 |
55 L | 250.8 ± 0.2 | 2.6 | 17.1 ± 1.2 | 320 ± 2 | 19.6 | 7.5 ± 0.5 | 334.8 ± 0.2 | 31.5 | 23.7 ± 1.0 |
22 L | 250.5 ± 0.3 | 2.3 | 20.1 ± 1.9 | 320.5 ± 0.3 | 19.1 | 8.0 ± 0.5 | 335.5 ± 0.2 | 29.4 | 24.6 ± 0.9 |
9 L | - | - | - | 321 ± 2 | 2.1 | 10 ± 4 | 333.9 ± 0.5 | 2.9 | 25 ± 3 |
7 L | - | - | - | 319.9 ± 0.9 | 1.7 | 14 ± 4 | 335.3 ± 0.8 | 2.1 | 30 ± 4 |
4 L | - | - | - | 320 ± 3 | 1.2 | 13 ± 4 | 336.1 ± 1.4 | 1.7 | 12 ± 2 |
2 L | - | - | - | 319 ± 5 | 0.7 | 100 ± 700 1 | 334.5 ± 1.6 | 1.1 | 50 ± 20 1 |
Thickness (±1 Layer) | Eg | A1g | ||||
---|---|---|---|---|---|---|
Position (cm−1) | Intensity (Counts/s) | FWHM (cm−1) | Position (cm−1) | Intensity (Counts/s) | FWHM (cm−1) | |
48 L | 145.80 ± 0.19 | 5.4 | 3.31 ± 1.16 | 195.36 ± 0.02 | 291.9 | 3.59 ± 0.08 |
14 L | - | - | - | 195.67 ± 0.02 | 123.8 | 3.66 ± 0.09 |
9 L | - | - | - | 195.68 ± 0.09 | 3.8 | 3.1 ± 0.5 |
5 L | - | - | - | 195.20 ± 0.07 | 2.5 | 2.7 ± 0.4 |
Appendix D. Eg and A1g Raman Modes in ZrX2
Appendix E. Discussion of Flake Degradation
References
- Bhimanapati, G.R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M.S.; Cooper, V.R.; et al. Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 2015, 9, 11509–11539. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.A.; Yoffe, A.D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335. [Google Scholar] [CrossRef]
- Andrei, E.Y.; Li, G.; Du, X. Electronic properties of graphene: A perspective from scanning tunneling microscopy and magnetotransport. Rep. Prog. Phys. 2012, 75, 56501. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Ang, P.K.; Loh, K.P. Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 2015, 10, 128–137. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Frindt, R.F. Superconductivity in ultrathin NbSe2 layers. Phys. Rev. Lett. 1972, 28, 299–301. [Google Scholar] [CrossRef]
- El-Bana, M.S.; Wolverson, D.; Russo, S.; Balakrishnan, G.; Paul, D.M.; Bending, S.J. Superconductivity in two-dimensional NbSe2 field effect transistors. Supercond. Sci. Technol. 2013, 26, 125020. [Google Scholar] [CrossRef]
- Ugeda, M.M.; Bradley, A.J.; Zhang, Y.; Onishi, S.; Chen, Y.; Ruan, W.; Ojeda-Aristizabal, C.; Ryu, H.; Edmonds, M.T.; Tsai, H.; et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2015, 12, 92–97. [Google Scholar] [CrossRef]
- Navarro-Moratalla, E.; Island, J.O.; Mañas-Valero, S.; Pinilla-Cienfuegos, E.; Castellanos-Gomez, A.; Quereda, J.; Rubio-Bollinger, G.; Chirolli, L.; Silva-Guillén, J.A.; Agraït, N.; et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 2016, 7, 11043. [Google Scholar] [CrossRef] [PubMed]
- Li, L.J.; O’Farrell, E.C.T.; Loh, K.P.; Eda, G.; Özyilmaz, B.; Castro Neto, A.H. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2015. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Wang, Z.; Wang, F.; Huang, Y.; Wang, F.; Yin, L.; Jiang, C.; He, J. Ultrasensitive Phototransistors Based on Few-Layered HfS2. Adv. Mater. 2015, 27, 7881–7887. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, T.; Amemiya, T.; Ishikawa, A.; Upadhyaya, V.; Tsuruta, K.; Tanaka, T.; Miyamoto, Y. Few-layer HfS2 transistors. Sci. Rep. 2016, 6, 22277. [Google Scholar] [CrossRef] [PubMed]
- Yue, R.; Barton, A.T.; Zhu, H.; Azcatl, A.; Pena, L.F.; Wang, J.; Peng, X.; Lu, N.; Cheng, L.; Addou, R.; et al. HfSe2 Thin Films: 2D Transition Metal Dichalcogenides Grown by Molecular Beam Epitaxy. ACS Nano 2015, 9, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, Z.; Zhang, W.; Li, Y. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737. [Google Scholar] [CrossRef]
- Guo, H.; Lu, N.; Wang, L. Tuning Electronic and Magnetic Properties of Early Transition Metal Dichalcogenides via Tensile Strain. J. Phys. Chem. C 2014, 118, 7242–7249. [Google Scholar] [CrossRef]
- Li, Y.; Kang, J.; Li, J. Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: First-principles calculations. RSC Adv. 2014, 4, 7396. [Google Scholar] [CrossRef]
- Kumar, A.; He, H.; Pandey, R.; Ahluwalia, P.K.; Tankeshwar, K. Semiconductor-to-metal phase transition in monolayer ZrS2: GGA+U study. In Proceedings of the AIP Conference, Tamilnadu, India, 16–20 December 2014; p. 90016.
- Jeong, S.; Yoo, D.; Ahn, M.; Miró, P.; Heine, T.; Cheon, J. Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. Nat. Commun. 2015, 6, 5763. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.T.; Jeong, S.; Seo, J.W.; Kim, M.C.; Sim, E.; Oh, Y.; Nam, S.; Park, B.; Cheon, J. Ultrathin zirconium disulfide nanodiscs. J. Am. Chem. Soc. 2011, 133, 7636–7639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhu, Y.; Wang, X.; Feng, Q.; Qiao, S.; Wen, W.; Chen, Y.; Cui, M.; Zhang, J.; Cai, C.; et al. Controlled Synthesis of ZrS2 Monolayer and Few-layers on Hexagonal Boron Nitride. J. Am. Chem. Soc. 2015, 137, 7051–7054. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fang, X.; Zhai, T.; Liao, M.; Gautam, U.K.; Wu, X.; Koide, Y.; Bando, Y.; Golberg, D. Electrical Transport and High-Performance Photoconductivity in Individual ZrS2 Nanobelts. Adv. Mater. 2010, 22, 4151–4156. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huang, L.; Jiang, X.-W.; Li, Y.; Wei, Z.; Li, J. Large scale ZrS2 atomically thin layers. J. Mater. Chem. C 2016, 4, 3143–3148. [Google Scholar] [CrossRef]
- Tsipas, P.; Tsoutsou, D.; Marquez-Velasco, J.; Aretouli, K.E.; Xenogiannopoulou, E.; Vassalou, E.; Kordas, G.; Dimoulas, A. Epitaxial ZrSe2/MoSe2 semiconductor v.d. Waals heterostructures on wide band gap AlN substrates. Microelectron. Eng. 2015, 147, 269–272. [Google Scholar] [CrossRef]
- Ferrari, A.; Basko, D. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dumcenco, D.O.; Zhu, Y.; Zhang, X.; Mao, N.; Feng, Q.; Zhang, M.; Zhang, J.; Tan, P.-H.; Huang, Y.-S.; et al. Composition-dependent Raman modes of Mo(1-x)W(x)S2 monolayer alloys. Nanoscale 2014, 6, 2833–2839. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-U.; Kim, K.; Han, S.; Ryu, G.H.; Lee, Z.; Cheong, H. Raman Signatures of Polytypism in Molybdenum Disulfide. ACS Nano 2016, 10, 1948–1953. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Q.; Yap, C.C.R.; Tay, B.K.; Edwin, T.H.T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2: Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22, 1385–1390. [Google Scholar] [CrossRef]
- Rice, C.; Young, R.J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K.S. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 2013, 87, 81307. [Google Scholar] [CrossRef]
- Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K.S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, C.R.; Balchin, A.A. Non-stoichiometry in ZrS2 and ZrSe2. Phys. Stat. Solidi 1978, 47, 173–176. [Google Scholar] [CrossRef]
- Klipstein, P.C.; Pereira, C.M.; Friend, R.H. Transport and Raman studies of the group IV layered compounds and their lithium intercalates: LixTiS2, LixTiSe2, LixZrS2, LixZrSe2, LixHfS2 and LixHfSe2. Philos. Mag. Part B 1987, 56, 531–559. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Roubi, L.; Carlone, C. Resonance Raman spectrum of HfS2 and ZrS2. Phys. Rev. B 1988, 37, 6808–6812. [Google Scholar] [CrossRef]
- Liang, B.; Andrews, L. Infrared Spectra and Density Functional Theory Calculations of Group 4 Transition Metal Sulfides. J. Phys. Chem. A 2002, 106, 6295–6301. [Google Scholar] [CrossRef]
- Yumnam, G.; Pandey, T.; Singh, A.K. High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: A first principles study. J. Chem. Phys. 2015, 143, 234704. [Google Scholar] [CrossRef] [PubMed]
- Temple, P.A.; Hathaway, C.E. Multiphonon Raman Spectrum of Silicon. Phys. Rev. B 1973, 7, 3685–3697. [Google Scholar] [CrossRef]
- McTaggart, F.K. The sulphides, Selenides, and Tellurides of Titanium, Zirconium, Hafnium, and Thorium. III. Electrical properties. Aust. J. Chem. 1958, 11, 471–480. [Google Scholar] [CrossRef]
- Bear, J.; McTaggart, F. The sulphides, Selenides, and Tellurides of Titanium, Zirconium, Hafnium, and Thorium. II. Chemical properties. Aust. J. Chem. 1958, 11, 458–470. [Google Scholar] [CrossRef]
- Chae, S.H.; Jin, Y.; Kim, T.S.; Chung, D.S.; Na, H.; Nam, H.; Kim, H.; Perello, D.J.; Jeong, H.Y.; Ly, T.H.; et al. Oxidation Effect in Octahedral Hafnium Disulfide Thin Film. ACS Nano 2016, 10, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Mishchenko, A.; Yu, G.L.; Khestanova, E.; Rooney, A.P.; Prestat, E.; Kretinin, A.V.; Blake, P.; Shalom, M.B.; Woods, C.; et al. Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. Nano Lett. 2015, 15, 4914–4921. [Google Scholar] [CrossRef] [PubMed]
- Greenaway, D.L.; Nitsche, R. Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. J. Phys. Chem. Solids 1965, 26, 1445–1458. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mañas-Valero, S.; García-López, V.; Cantarero, A.; Galbiati, M. Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers. Appl. Sci. 2016, 6, 264. https://doi.org/10.3390/app6090264
Mañas-Valero S, García-López V, Cantarero A, Galbiati M. Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers. Applied Sciences. 2016; 6(9):264. https://doi.org/10.3390/app6090264
Chicago/Turabian StyleMañas-Valero, Samuel, Víctor García-López, Andrés Cantarero, and Marta Galbiati. 2016. "Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers" Applied Sciences 6, no. 9: 264. https://doi.org/10.3390/app6090264
APA StyleMañas-Valero, S., García-López, V., Cantarero, A., & Galbiati, M. (2016). Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers. Applied Sciences, 6(9), 264. https://doi.org/10.3390/app6090264