Molecular Dynamics Study on the Resonance Properties of a Nano Resonator Based on a Graphene Sheet with Two Types of Vacancy Defects
Abstract
:1. Introduction
2. Physical Models and Simulation Methods
2.1. Modeling
2.2. Simulation Method and Process
3. Results and Analysis
3.1. Influence of Different Forces on the Resonance Properties of Graphene with Vacancies
3.2. Influence of Different Temperature on the Resonance Properties of Graphene with Vacancies
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Sandoz-Rosado, E.J.; Tertuliano, O.A.; Terrell, E.J. An atomistic study of the abrasive wear and failure of graphene sheets when used as a solid lubricant and a comparison to diamond-like-carbon coatings. Carbon 2012, 50, 4078–4084. [Google Scholar] [CrossRef]
- Bao, Q.; Loh, K.P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 2012, 6, 3677–3694. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.C.; Zhang, X.Y.; Chen, Z.Q.; Ji, H.Y. A review of graphene on NEMS. Recent Pat. Nanotechnol. 2015, 10, 3–10. [Google Scholar] [CrossRef]
- Xie, S.X.; Jiao, N.D.; Tung, S.; Liu, L.Q. Fabrication of SWCNT-graphene field-effect transistors. Micromachines 2016, 6, 1317–1330. [Google Scholar] [CrossRef]
- Bunch, J.S.; van der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Frank, I.W.; Tanenbaum, D.M.; Zande, A.M.V.D.; Mceuen, P.L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561. [Google Scholar] [CrossRef]
- Lee, J.; Wang, Z.; He, K.; Shan, J.; Feng, P.X. High frequency MoS2 nanomechanical resonators. ACS Nano 2013, 7, 6086–6091. [Google Scholar] [CrossRef] [PubMed]
- Min, S.K.; Kim, W.Y.; Cho, Y.; Kim, K.S. Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 2011, 6, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Rajan, A.C.; Rezapour, M.R.; Yun, J.; Cho, Y.; Cho, W.J.; Min, S.K.; Lee, G.; Kim, K.S. Two Dimensional Molecular Electronics Spectroscopy for Molecular Fingerprinting, DNA Sequencing, and Cancerous DNA Recognition. ACS Nano 2014, 8, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhan, H.; Xia, K.; Zhang, W.; Sang, S.; Gu, Y. Resonance of graphene nanoribbons doped with nitrogen and boron: A molecular dynamics study. Beilstein J. Nanotechnol. 2014, 5, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.F.; Zhang, Y.Y.; Bell, J.M.; Zhang, B.C.; Gu, Y.T. Tailoring the Resonance of Bilayer Graphene Sheets by Interlayer sp3 Bonds. J. Phys. Chem. C 2014, 118, 732–739. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.; et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Zhang, Y.; Huang, Q.; Wang, H.; Wang, G. Effects of vacancy defects on graphene nanoribbon field effect transistor. IET Micro Nano Lett. 2013, 8, 816–821. [Google Scholar] [CrossRef]
- Deretzis, I.; Fiori, G.; Iannaccone, G.; Magna, A.L. Effects due to backscattering and pseudogap features in graphene manoribbons with single vacancies. Phys. Rev. B 2010, 81, 085427. [Google Scholar] [CrossRef]
- Stone, A.J.; Wales, D.J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 1986, 128, 501–503. [Google Scholar] [CrossRef]
- Xu, S.C.; Irle, S.; Musaev, D.G.; Lin, M.C. Quantum chemical prediction of reaction pathways and rate constants for dissociative adsorption of CO(x) and NO(x) on the graphite (0001) surface. J. Phys. Chem. B 2006, 110, 21135–21144. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, P.O.; Foster, A.S.; Ayuela, A.; Krasheninnikov, A.; Nordlund, K.; Nieminen, R.M. Magnetic properties and diffusion of adatoms on a graphene sheet. Phys. Rev. Lett. 2003, 91, 017202. [Google Scholar] [CrossRef] [PubMed]
- Talapatra, S.; Ganesan, P.G.; Kim, T.; Vajtai, R.; Huang, M.; Shima, M.; Ramanath, G.; Srivastava, D.; Deevi, S.C.; Ajayan, P.M. Irradiation-induced magnetism in carbon nanostructures. Phys. Rev. Lett. 2005, 95, 097201. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.U.; Park, B.; Cho, Y.; Hyun, S.; Kim, J.K.; Kim, K.S. Simultaneous Visualization of Graphene Grain Boundaries and Wrinkles with Structural Information by Gold Deposition. ACS. Nano 2014, 8, 8662–8668. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.W.; Cohen, M.L.; Louie, S.G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Park, H.S. Intrinsic energy dissipation in CVD-grown graphene nanoresonators. Nanoscale 2012, 11, 3460–3465. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.C.; Kisielowski, C.; Erni, R.; Rossell, M.D.; Crommie, M.F.; Zettl, A. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 2008, 8, 3582–3586. [Google Scholar] [CrossRef] [PubMed]
- Neekamal, M.; Peeters, F.M. Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene. Phys. Rev. B 2010, 23, 5032. [Google Scholar]
- Kim, S.Y.; Park, H.S. The importance of edge effects on the intrinsic loss mechanisms of graphene nanoresonators. Nano Lett. 2009, 9, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.W.; Wang, J.S. Why edge effects are important on the intrinsic loss mechanisms of graphene nanoresonators. J. Appl. Phys. 2012, 111, 054314–054319. [Google Scholar] [CrossRef]
- Zhan, H.F.; Gu, Y.T. A fundamental numerical and theoretical study for the vibrational properties of nanowires. J. Appl. Phys. 2012, 111, 124303–124309. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.W.; Kim, H.W.; Kim, K.S.; Lee, J.H. Molecular dynamics modeling and simulation of a graphene-based nanoelectromechanical resonator. Curr. Appl. Phys. 2013, 13, 789–794. [Google Scholar] [CrossRef]
- And, F.H.; Kasemo, B.; Nylander, T.; Fant, C.; Kristin Sott, A.; Elwing, H. Variations in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal. Chem. 2001, 73, 5796–5804. [Google Scholar]
- Banhart, F.; Kotakoski, J.; Krasheninnikov, A.V. Structural defects in graphen. ACS Nano 2011, 5, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Zhang, J.H.; Yang, L.J.; Gu, B. Molecular dynamics simulation of resonance properties of strain graphene nanoribbons. Acta Phys. Sin. 2011, 60, 056103. [Google Scholar]
- Singh, V.; Sengupta, S.; Solanki, H.S.; Dhall, R.; Allain, A.; Dhara, S.; Pant, P.; Deshmukh, M.M. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology 2010, 21, 165204–165211. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Li, W.; Liu, X.; Wang, Y. Molecular Dynamics Study on the Resonance Properties of a Nano Resonator Based on a Graphene Sheet with Two Types of Vacancy Defects. Appl. Sci. 2017, 7, 79. https://doi.org/10.3390/app7010079
Tian W, Li W, Liu X, Wang Y. Molecular Dynamics Study on the Resonance Properties of a Nano Resonator Based on a Graphene Sheet with Two Types of Vacancy Defects. Applied Sciences. 2017; 7(1):79. https://doi.org/10.3390/app7010079
Chicago/Turabian StyleTian, Wenchao, Wenhua Li, Xiaohan Liu, and Yongkun Wang. 2017. "Molecular Dynamics Study on the Resonance Properties of a Nano Resonator Based on a Graphene Sheet with Two Types of Vacancy Defects" Applied Sciences 7, no. 1: 79. https://doi.org/10.3390/app7010079
APA StyleTian, W., Li, W., Liu, X., & Wang, Y. (2017). Molecular Dynamics Study on the Resonance Properties of a Nano Resonator Based on a Graphene Sheet with Two Types of Vacancy Defects. Applied Sciences, 7(1), 79. https://doi.org/10.3390/app7010079