Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE
Abstract
:1. Introduction
1.1. Perla Picosecond Thin-Disk Laser Platform
1.2. Perla A and Perla B Platforms
1.3. Atomic Difusion Bonding (ADB)
2. Mid-IR Picosecond Pulse Generation
3. Harmonics Generation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bonse, J.; Hoehm, S.; Kirner, S.V.; Rosenfeld, A.; Krueger, J. Laser-induced periodic surface structures—A scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–15. [Google Scholar] [CrossRef]
- Neuenschwander, B.; Jaeggi, B.; Schmid, M.; Hennig, G. Surface structuring with ultra-short laser pulses: Basics, limitations and needs for high throughput. Phys. Procedia 2014, 56, 1047–1058. [Google Scholar] [CrossRef]
- Wu, B.; Deng, L.; Liu, P.; Zhang, F.; Duan, J.; Zeng, X. Effects of picosecond laser repetition rate on ablation of Cr12MoV cold work mold steel. Appl. Surf. Sci. 2017, 409, 403–412. [Google Scholar] [CrossRef]
- Freitag, C.; Wiedenmann, M.; Negel, J.; Loescher, A.; Onuseit, V.; Weber, R.; Ahmed, M.A.; Graf, T. High quality processing of CFRP with a 1.1 kW picosecond laser. Appl. Phys. A 2015, 119, 1237–1243. [Google Scholar] [CrossRef]
- Baumgarten, C.; Pedicone, M.; Bravo, H.; Wang, H.; Yin, L.; Menoni, C.S.; Rocca, J.J.; Reagan, B.A. 1 J, 0.5 kHz repetition rate picosecond laser. Opt. Lett. 2016, 41, 3339–3342. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Riedel, R.; Willner, A.; Düsterer, S.; Prandolini, M.J.; Feldhaus, J.; Faatz, B.; Rossbach, J.; Drescher, M.; Tavella, F. Pulsed operation of a high average power Yb:YAG thin-disk multipass amplifier. Opt. Express 2012, 20, 5038–5043. [Google Scholar] [CrossRef] [PubMed]
- Negel, J.P.; Loescher, A.; Voss, A.; Bauer, D.; Sutter, D.; Killi, A.; Ahmed, M.A.; Graf, T. Ultrafast thin disk multipass amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Opt. Express 2015, 23, 21064–21077. [Google Scholar] [CrossRef] [PubMed]
- Nubbemeyer, T.; Kaumanns, M.; Ueffing, M.; Gorjan, M.; Alismail, A.; Fattahi, H.; Brons, J.; Pronin, O.; Barros, H.G.; Major, Z.; et al. 1 kW, 200 mJ picosecond thin-disk laser system. Opt. Lett. 2017, 42, 1381–1384. [Google Scholar] [CrossRef] [PubMed]
- Novak, O.; Turcicova, H.; Smrz, M.; Miura, T.; Endo, A.; Mocek, T. Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser. Opt. Lett. 2016, 41, 5210–5213. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L.; Krogen, P.; Liang, H.; Stein, G.J.; Moses, J.; Lai, C.J.; Siqueira, J.P.; Zapata, L.E.; Kärtner, F.X.; Hong, K.H. Multi-mJ, kHz, ps deep-ultraviolet source. Opt. Lett. 2015, 40, 665–668. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V. Parametric down-conversion devices: The coverage of the mid-infrared spectral range by solid-state laser sources. Opt. Mater. 2012, 34, 536–554. [Google Scholar] [CrossRef]
- Hong, K.H.; Huang, S.W.; Moses, J.; Fu, X.; Lai, C.J.; Cirmi, G.; Sell, A.; Granados, E.; Keathley, P.; Kärtner, F.X. High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 μm pumped by a picosecond cryogenic Yb:YAG laser. Opt. Express 2011, 19, 15538–15548. [Google Scholar] [CrossRef] [PubMed]
- Klein-Wiele, J.H.; Bekesi, J.; Simon, P. Sub-micron patterning of solid materials with ultraviolet femtosecond pulses. Appl. Phys. A 2004, 79, 775–778. [Google Scholar] [CrossRef]
- Grojo, D.; Leyder, S.; Delaporte, P.; Marine, W.; Sentis, M.; Utéza, O. Long-wavelength multiphoton ionization inside band-gap solids. Phys. Rev. B 2013, 88, 195135. [Google Scholar] [CrossRef]
- Curl, R.F.; Tittel, F.K. Tunable infrared laser spectroscopy. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 2002, 98, 219–272. [Google Scholar] [CrossRef]
- Ochi, Y.; Nagashima, K.; Maruyama, M.; Tsubouchi, M.; Yoshida, F.; Kohno, N.; Mori, M.; Sugiyama, A. Yb:YAG thin-disk chirped pulse amplification laser system for intense terahertz pulse generation. Opt. Express 2015, 23, 15057–15064. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.W.; Granados, E.; Huang, W.R.; Hong, K.H.; Zapata, L.E.; Kärtner, F.X. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt. Lett. 2013, 38, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.W.; Cirmi, G.; Moses, J.; Hong, K.H.; Bhardwaj, S.; Birge, J.R.; Chen, L.J.; Li, E.; Eggleton, B.J.; Cerullo, G.; et al. High-energy pulse synthesis with sub-cycle waveform control for strong-field physics. Nat. Photonics 2011, 5, 475–479. [Google Scholar] [CrossRef]
- Fattahi, H.; Barros, H.G.; Gorjan, M.; Nubbemeyer, T.; Alsaif, B.; Teisset, C.Y.; Schultze, M.; Prinz, S.; Haefner, M.; Ueffing, M.; et al. Third generation femtosecond technology. Optica 2014, 1, 45–63. [Google Scholar] [CrossRef]
- Endo, A. Extendibility evaluation of industrial EUV source technologies for kW average power and 6.x nm wavelength operation. J. Mod. Phys. 2014, 5, 285–295. [Google Scholar] [CrossRef]
- Pagania, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V. Design considerations of 10 kW-scale, extreme ultraviolet SASE FEL for lithography. Nucl. Instrum. Methods Phys. Res. A 2001, 463, 9–25. [Google Scholar] [CrossRef]
- Endo, A. High-brightness solid-state lasers for compact short-wavelength sources. In High Energy and Short Pulse Lasers; Viskup, R., Ed.; InTech: Rijeka, Croatia, 2016; pp. 101–128. Available online: https://www.intechopen.com/books/high-energy-and-short-pulse-lasers/high-brightness-solid-state-lasers-for-compact-short-wavelength-sources (accessed on 7 September 2016). [CrossRef]
- Graves, W.S.; Bessuille, J.; Brown, P.; Carbajo, S.; Dolgashev, V.; Hong, K.H.; Ihloff, E.; Khaykovich, B.; Lin, H.; Murari, K.; et al. Compact X-ray source based on burst-mode inverse Compton scattering at 100 kHz. Phys. Rev. Accel. Beams 2014, 17, 120701. [Google Scholar] [CrossRef]
- Chyla, M.; Miura, T.; Smrz, M.; Jelinkova, H.; Endo, A.; Mocek, T. Optimization of beam quality and optical-to-optical efficiency of Yb:YAG thin-disk regenerative amplifier by pulsed pumping. Opt. Lett. 2014, 39, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Smrž, M.; Miura, T.; Chyla, M.; Nagisetty, S.S.; Novák, O.; Endo, A.; Mocek, T. Supression of nonlinear phonon relaxation in Yb:YAG thin disk via zero phonon line pumping. Opt. Lett. 2014, 39, 4919–4922. [Google Scholar] [CrossRef] [PubMed]
- Stenersen, K.; Wang, G. New direct optical pump schemes for multiatmosphere CO2 and N2O lasers. IEEE J. Quantum Electron. 1989, 25, 147–153. [Google Scholar] [CrossRef]
- Novák, O.; Miura, T.; Smrž, M.; Chyla, M.; Nagisetty, S.S.; Mužík, J.; Linnemann, J.; Turčičová, H.; Jambunathan, V.; Slezák, O.; et al. Status of the high average power diode-pumped solid state laser development at HiLASE. Appl. Sci. 2015, 5, 637–665. [Google Scholar] [CrossRef]
- Smrž, M.; Mužík, J.; Novák, O.; Chyla, M.; Turčičová, H.; Nagisetty, S.S.; Huynh, J.; Miura, T.; Linnemann, J.; Severová, P.; et al. Progress in kW-class picosecond thin-disk laser development at the HiLASE. In Proceedings of the SPIE Photonics West, Solid State Lasers XXV: Technology and Devices, San Francisco, CA, USA, 13–18 February 2016; Volume 9726, p. 972617. [Google Scholar]
- Mužík, J.; Smrž, M.; Chyla, M.; Kubeček, V.; Endo, A.; Mocek, T. Development of a variable repetition rate, kW-level, picosecond ring regenerative amplifier. In Proceedings of the CLEO/Europe EQEC Proceedings, Munich, Germany, 25–29 June 2017. [Google Scholar]
- Mužík, J.; Smrž, M.; Chyla, M.; Novak, O.; Kubeček, V.; Endo, A.; Mocek, T. 4-mJ, 50-kHz picosecond pulses from PERLA C thin-disk laser platform. In Proceedings of the SPIE Photonics Optics + Optoelectronics, Prague, Czech Republic, 24–27 April 2017. [Google Scholar]
- Smrž, M.; Chyla, M.; Novák, O.; Miura, T.; Endo, A.; Mocek, T. Amplification of picosecond pulses to 100 W by an Yb:YAG thin-disk with CVBG compressor. In Proceedings of the SPIE, Prague, Czech Republic, 14–15 April 2015; Volume 9513, pp. 951304-1–951304-7. [Google Scholar]
- Chyla, M.; Nagisetty, S.S.; Zhou, H.; Smrž, M.; Endo, A.; Mocek, T. High-energy burst pulse amplification in PERLA B Thin-Disk Laser Platform. In Proceedings of the SPIE Photonics Optics + Optoelectronics, Prague, Czech Republic, 24–27 April 2017. [Google Scholar]
- Fan, T.Y.; Ripin, D.J.; Aggarwal, R.L.; Ochoa, J.R.; Chann, B.; Tilleman, M.; Spitzberg, J. Cryogenic Yb3+-doped solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 448–459. [Google Scholar] [CrossRef]
- Körner, J.; Jambunathan, V.; Hein, J.; Seifert, R.; Loeser, M.; Siebold, M.; Schramm, U.; Sikocinski, P.; Lucianetti, A.; Mocek, T.; et al. Spectroscopic characterization of Yb3+-doped laser materials at cryogenic temperatures. Appl. Phys. B 2014, 116, 75–81. [Google Scholar] [CrossRef]
- Sikocinski, P.; Novak, O.; Smrz, M.; Pilar, J.; Jambunathan, V.; Jelinkova, H.; Endo, A.; Lucianetti, A.; Mocek, T. Time-resolved measurement of thermally induced aberrations in a cryogenically cooled Yb:YAG slab with a wavefront sensor. Appl. Phys. B 2016, 122, 73. [Google Scholar] [CrossRef]
- Nagisetty, S.S.; Severova, P.; Miura, T.; Smrž, M.; Kon, H.; Uomoto, M.; Shimatsu, T.; Kawasaki, M.; Higashiguchi, T.; Endo, A.; et al. Lasing and thermal characteristics of Yb:YAG/YAG composite with atomic diffusion bonding. Laser Phys. Lett. 2017, 14, 015001. [Google Scholar] [CrossRef]
- Shimatsu, T.; Uomoto, M. Atomic diffusion bonding of wafers with thin nanocrystalline metal films. J. Vac. Sci. Technol. B 2010, 28, 706–714. [Google Scholar] [CrossRef]
- Chyla, M.; Nagisetty, S.S.; Severova, P.; Miura, T.; Mann, K.; Endo, A.; Mocek, T. Time-resolved deformation measurement of Yb:YAG thin disk using wavefront sensor. In Proceedings of the SPIE Photonics West, Laser Resonators, Microresonators, and Beam Control XVII, San Francisco, CA, USA, 3 March 2015; Volume 9343, p. 93431E. [Google Scholar]
- Tittel, F.; Richter, D.; Fried, A. Mid-infrared laser applications in spectroscopy. In Solid-State Mid-Infrared Laser Sources; Springer: Berlin/Heidelberg, Germany, 2003; Volume 89, pp. 445–510. [Google Scholar]
- Popmintchev, T.; Chen, M.; Popmintchev, D.; Arpin, P.; Brown, S.; Alisauskas, S.; Andriukaitis, G.; Baliunas, T.; Mück, O.D.; Pugzlys, A.; et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 2012, 336, 1287–1291. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Jovanovic, I.; Arab, E.; Hoang, P.; Musumeci, P.; O’Shea, B.; Rosenzweig, J.; Murokh, A.; Ovedenko, A.; Tikhoplav, R.; et al. A 5 μm wavelength laser for dielectric laser acceleration. Adv. Accel. Concepts 2012, 1507, 893–898. [Google Scholar] [CrossRef]
- Schliesser, A.; Picqué, N.; Haensch, T.W. Mid-infrared frequency combs. Nat. Photonics 2012, 6, 440–449. [Google Scholar] [CrossRef]
- Stubenvoll, M.; Schäfer, B.; Mann, K.; Novak, O. Photothermal method for absorption measurements in anisotropic crystals. Rev. Sci. Instrum. 2016, 87, 023904. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Sasaki, T. Development of new NLO borate crystals. Bull. Mater. Sci. 1999, 22, 399–403. [Google Scholar] [CrossRef]
- Turcicova, H.; Novak, O.; Smrz, M.; Miura, T.; Endo, A.; Mocek, T. Picosecond pulses in deep ultraviolet (257.5 nm and 206 nm) and mid-IR produced by a high-power 100 kHz solid-state thin-disk laser. In Proceedings of the SPIE Photonics Europe, Laser Sources and Applications III, Brussels, Belgium, 3–7 April 2016; Volume 9893, p. 989302. [Google Scholar]
- Yap, Y.K.; Inoue, T.; Sakai, H.; Kagebayashi, Y.; Mori, Y.; Sasaki, T.; Deki, K.; Horiguchi, M. Long-term operation of CsLiB6O10 at elevated crystal temperature. Opt. Lett. 1998, 23, 34–36. [Google Scholar] [CrossRef] [PubMed]
Year | Perla A | Perla B | Perla C | Perla D |
---|---|---|---|---|
2015 | Not available | 45 mJ; 1 kHz; 45 W | 1 mJ; 1 kHz; 90 W; 1.9 ps | Not available |
2017 | 100 mJ; 10 Hz proof-of-principle experiments, under design | 45 mJ; 1 kHz; 45 W; <1 ps, M2 < 1.3, Also new: 50 W; 10 kHz burst | 9 mJ; 50 kHz; 450 W; or 4.5 mJ; 100 kHz; 450 W; 1.3 ps, M2 < 1.5–2; RMS stability < 1.3% | Under design |
Year | Second Harmonic 515 nm | Fourth Harmonic 257.5 nm | Fifth Harmonic 205 nm | Mid-IR OPG + OPA 1.5–3 µm |
---|---|---|---|---|
2015 | 11 W; 100 kHz; 40% conversion efficiency | 2 W; 100 kHz; 18% conversion efficiency | Not available | Under design |
2017 | 40 W; 100 kHz; 56% conversion efficiency | 6 W; 100 kHz; 18% conversion efficiency | 0.8 W; 100 kHz; 20% conversion efficiency | 1.7–2.6 µm tunability (both signal + idller waves); 8.5 W signal (<2 µm); 5 W idler (>2 µm); 77 kHz |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smrž, M.; Novák, O.; Mužík, J.; Turčičová, H.; Chyla, M.; Nagisetty, S.S.; Vyvlečka, M.; Roškot, L.; Miura, T.; Černohorská, J.; et al. Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE. Appl. Sci. 2017, 7, 1016. https://doi.org/10.3390/app7101016
Smrž M, Novák O, Mužík J, Turčičová H, Chyla M, Nagisetty SS, Vyvlečka M, Roškot L, Miura T, Černohorská J, et al. Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE. Applied Sciences. 2017; 7(10):1016. https://doi.org/10.3390/app7101016
Chicago/Turabian StyleSmrž, Martin, Ondřej Novák, Jiří Mužík, Hana Turčičová, Michal Chyla, Siva Sankar Nagisetty, Michal Vyvlečka, Lukáš Roškot, Taisuke Miura, Jitka Černohorská, and et al. 2017. "Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE" Applied Sciences 7, no. 10: 1016. https://doi.org/10.3390/app7101016
APA StyleSmrž, M., Novák, O., Mužík, J., Turčičová, H., Chyla, M., Nagisetty, S. S., Vyvlečka, M., Roškot, L., Miura, T., Černohorská, J., Sikocinski, P., Chen, L., Huynh, J., Severová, P., Pranovich, A., Endo, A., & Mocek, T. (2017). Advances in High-Power, Ultrashort Pulse DPSSL Technologies at HiLASE. Applied Sciences, 7(10), 1016. https://doi.org/10.3390/app7101016