Effects of Viewing Displays from Different Distances on Human Visual System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Setup
2.4. Experimental Procedures
2.5. Response Measures
2.5.1. Subjective Visual Discomfort Evaluation
2.5.2. EEG Signal Response
2.6. Statistical Analysis
3. Results
3.1. Subjective Visual Discomfort Rating
3.2. EEG Signals Response Analysis
3.2.1. Relative β Power
3.2.2. α/β Power Ratio
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kim, Y.J.; Lee, E.C. EEG based comparative measurement of visual fatigue caused by 2D and 3D. Commun. Comput. Inf. Sci. 2011, 174, 289–292. [Google Scholar]
- Mun, S.C.; Park, M.C.; Park, S.I.; Whang, M.C. SSVEP and ERP measurement of cognitive fatigue caused by stereoscopic 3D. Neurosci. Lett. 2012, 525, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Kim, D.; Sohn, H.; Lee, S.I.; Park, H.W.; Ro, Y.M. Subjective and objective measurements of visual fatigue induced by excessive disparities in stereoscopic images. Proc. SPIE 2013, 8648, 86480M. [Google Scholar]
- Cho, H.; Kang, M.-K.; Yoon, K.-J.; Jun, S.C. Feasibility Study for Visual Discomfort Assessment on Stereo Images Using EEG. In Proceedings of the International Conference on 3D Imaging, Liège, Belgium, 3–5 December 2012; pp. 1–6. [Google Scholar]
- Park, S.J.; Subramaniyam, M.; Moon, M.K.; Kim, D.G. Physiological responses to watching 3D on television with active and passive glasses. In International Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2013; pp. 498–502. [Google Scholar]
- Chen, C.; Li, K.; Wu, Q.; Wang, H.; Qian, Z.; Sudlow, G. EEG-based detection and evaluation of fatigue caused by watching 3DTV. Displays 2013, 34, 81–88. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Li, K.; Wu, Q.; Wang, H.; Qian, Z.; Gu, N. Assessment visual fatigue of watching 3DTV using EEG power spectral parameters. Displays 2014, 35, 266–272. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Li, K.; Liu, Y.; Chen, X. Visual fatigue caused by watching 3DTV: An fMRI study. Biomed. Eng. Online 2015, 14, S12. [Google Scholar] [CrossRef] [PubMed]
- Li, H.C.; Seo, J.H.; Kham, K.T.; Lee, S.H. Measurement of 3D Visual Fatigue Using Event-related Potential: 3D Oddball Paradigm. In Proceedings of the 3DTV Conference: The True Vision—Capture, Transmission and Display of 3D Video, Istanbul, Turkey, 28–30 May 2008; pp. 213–216. [Google Scholar]
- Hsu, B.W.; Wang, M.J.J. Evaluating the effectiveness of using electroencephalogram power indices to measure visual fatigue. Percept. Mot. Skills 2013, 116, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, Y.; Zou, B.; Huang, Y. Study on issues of visual fatigue of display devices. In Signal Recovery and Synthesis; Optical Society of America: Washington, DC, USA, 2014. [Google Scholar]
- Wang, Y.; Liu, T.; Li, S.; Wang, J. Using electroencephalogram spectral components to assess visual fatigue caused by sustained prism-induced diplopia. In Proceedings of the 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong, China, 15–17 October 2016; pp. 1551–1556. [Google Scholar]
- Bang, J.W.; Heo, H.; Choi, J.S.; Park, K.R. Assessment of eye fatigue caused by 3D displays based on multimodal measurements. Sensors 2014, 14, 16467–16485. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Liu, Y.; Zou, B.; Wang, Y. Study of electroencephalography-based objective stereoscopic visual fatigue evaluation. In Proceedings of the 2015 International Symposium on Bioelectronics and Bioinformatics (ISBB), Beijing, China, 14–17 October 2015; pp. 160–163. [Google Scholar]
- Hou, C.; Yue, G.; Shen, L. Assessing the visual discomfort of compressed stereoscopic images using ERP. In International Conference on Human Centered Computing; Springer: Cham, Switzerland, 2016; pp. 127–137. [Google Scholar]
- Frey, J.; Appriou, A.; Lotte, F.; Hachet, M. Classifying EEG signals during stereoscopic visualization to estimate visual comfort. Comput. Intell. Neurosci. 2016, 2016, 2758103. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Lee, H.; Shu, C.; Hsu, H. Electroencephalographic study of mental fatigue in visual display terminal tasks. J. Med. Biol. Eng. 2007, 27, 124. [Google Scholar]
- Xie, X.; Hu, J.; Liu, X.; Li, P.; Wang, S. The EEG changes during night-time driver fatigue. In Proceedings of the 2009 IEEE Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009; pp. 935–939. [Google Scholar]
- Lal, S.K.; Craig, A.; Boord, P.; Kirkup, L.; Nguyen, H. Development of an algorithm for an EEG-based driver fatigue countermeasure. J. Saf. Res. 2003, 34, 321–328. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Zheng, C. EEG-based estimation of mental fatigue by using KPCA–HMM and complexity parameters. Biomed. Signal Process. Control 2010, 5, 124–130. [Google Scholar] [CrossRef]
- Kar, S.; Bhagat, M.; Routray, A. EEG signal analysis for the assessment and quantification of driver’s fatigue. Transp. Res. Part F 2010, 13, 297–306. [Google Scholar] [CrossRef]
- De Waard, D. The Measurement of Drivers’ Mental Workload; Groningen University, Traffic Research Center: Groningen, The Netherlands, 1996. [Google Scholar]
- Fisch, B.J.; Spehlmann, R. (Eds.) Fisch and Spehlmann’s EEG Primer: Basic Principles of Digital and Analog EEG; Elsevier Health Sciences: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Cheng, S.-Y.; Hsu, H.-T. Mental Fatigue Measurement Using EEG. In Risk Management Trends; Intech: Rijeka, Croatia, 2011. [Google Scholar]
- Tran, Y.; Thuraisingham, R.A.; Wijesuriya, N.; Nguyen, H.T.; Craig, A. Detecting neural changes during stress and fatigue effectively: A comparison of spectral analysis and sample entropy. In Proceedings of the 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, HI, USA, 2–5 May 2007; pp. 350–353. [Google Scholar]
- Belyavin, A.; Wright, N.A. Changes in electrical activity of the brain with vigilance. Electroencephalogr. Clin. Neurophysiol. 1987, 66, 137–144. [Google Scholar] [CrossRef]
- Subasi, A. Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Syst. Appl. 2005, 28, 701–711. [Google Scholar] [CrossRef]
- Jap, B.T.; Lal, S.; Fischer, P.; Bekiaris, E. Using EEG spectral components to assess algorithms for detecting fatigue. Expert Syst. Appl. 2009, 36, 2352–2359. [Google Scholar] [CrossRef]
- Eoh, H.J.; Chung, M.K.; Kim, S.H. Electroencephalographic study of drowsiness in simulated driving with sleep deprivation. Int. J. Ind. Ergon. 2005, 35, 307–320. [Google Scholar] [CrossRef]
- Patterson, R. Human factors of 3D displays. J. Soc. Inf. Disp. 2007, 15, 861–871. [Google Scholar] [CrossRef]
- Lambooij, M.; Fortuin, M.; Heynderickx, I.; IJsselsteijn, W. Visual discomfort and visual fatigue of stereoscopic displays: A review. J. Imaging Sci. Technol. 2009, 53, 1–14. [Google Scholar] [CrossRef]
- Shibata, T.; Kim, J.; Hoffman, D.M.; Banks, M.S. The zone of comfort: Predicting visual discomfort with stereo displays. J. Vis. 2011, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Kim, J.; Hoffman, D.M.; Banks, M.S. Visual discomfort with stereo displays: Effects of viewing distance and direction of vergence-accommodation conflict. Proc. SPIE Int. Soc. Opt. Eng. 2011, 7863, 78630P1–78630P9. [Google Scholar] [PubMed]
- Park, M.C.; Mun, S. Overview of measurement methods for factors affecting the human visual system in 3D displays. J. Disp. Technol. 2015, 11, 877–888. [Google Scholar] [CrossRef]
- Matthews, M.L.; Lovasik, J.V.; Mertins, K. Visual performance and subjective discomfort in prolonged viewing of chromatic displays. Hum. Factors 1989, 31, 259–271. [Google Scholar] [CrossRef] [PubMed]
- American Optometric Association. Guide to the Clinical Aspects of Computer Vision Syndrome; American Optometric Association: St. Louis, MO, USA, 1995. [Google Scholar]
- Kim, C.J.; Park, S.; Won, M.J.; Whang, M.; Lee, E.C. Autonomic Nervous System Responses Can Reveal Visual Fatigue Induced by 3D Displays. Sensors 2013, 13, 13054–13062. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Won, M.J.; Mun, S.; Lee, E.C.; Whang, M. Does visual fatigue from 3D displays affect autonomic regulation and heart rhythm? Int. J. Psychophysiol. 2014, 92, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Assembly, I.R. Methodology for the Subjective Assessment of the Quality of Television Pictures; International Telecommunication Union: Geneva, Switzerland, 2003. [Google Scholar]
- Park, S.J.; Oh, S.B.; Subramaniyam, M.; Lim, H.K. Human impact assessment of watching 3D television by electrocardiogram and subjective evaluation. In Proceedings of the XX IMEKO World Congress—Metrology for Green Growth, Busan, Korea, 9–14 September 2012. [Google Scholar]
- Chen, C.Y.; Ke, M.D.; Wu, P.J.; Kuo, C.D.; Pong, B.J.; Lai, Y.Y. The influence of polarized 3D display on autonomic nervous activities. Displays 2014, 35, 196–201. [Google Scholar] [CrossRef]
- Li, H.C.O. Human factor research on the measurement of subjective three dimensional fatigue. J. Broadcast. Eng. 2010, 15, 607–616. [Google Scholar] [CrossRef]
- Kennedy, R.S.; Lane, N.E.; Berbaum, K.S.; Lilienthal, M.G. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 1993, 3, 203–220. [Google Scholar] [CrossRef]
- Andreassi, J.L. Psychophysiology: Human Behavior & Physiological Response; Taylor & Francis: Mahwah, NJ, USA, 2009. [Google Scholar]
- Iwasaki, T.; Kurimoto, S. Objective evaluation of eye strain using measurements of accommodative oscillation. Ergonomics 1987, 30, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; Hilgers, T.; Marsella, J. Essay prompts and topics minimizing the effect of mean differences. Writ. Commun. 1991, 8, 533–556. [Google Scholar] [CrossRef]
- Yano, S.; Ide, S.; Mitsuhashi, T.; Thwaites, H. A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays 2002, 23, 191–201. [Google Scholar] [CrossRef]
- Park, S.; Won, M.J.; Lee, E.C.; Mun, S.; Park, M.C.; Whang, M. Evaluation of 3D cognitive fatigue using heart–brain synchronization. Int. J. Psychophysiol. 2015, 97, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.M.; Girshick, A.R.; Akeley, K.; Banks, M.S. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 2008, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Wook Wee, S.; Moon, N.J.; Lee, W.K.; Jeon, S. Ophthalmological factors influencing visual asthenopia as a result of viewing 3D displays. Br. J. Ophthalmol. 2012, 96, 1391–1394. [Google Scholar]
- Wook Wee, S.; Moon, N.J. Clinical evaluation of accommodation and ocular surface stability relavant to visual asthenopia with 3D displays. BMC Ophthalmol. 2014, 14, 1. [Google Scholar]
- Lippmann, M.G. Epreuves reversibles donnant la sensation du relief. J. Phys. Theor. Appl. 1908, 7, 821–825. [Google Scholar] [CrossRef]
- Jung, J.H.; Hong, K.; Lee, B. Effect of viewing region satisfying super multi-view condition in integral imaging. SID Symp. Dig. Tech. Pap. 2012, 43, 883–886. [Google Scholar] [CrossRef]
- Maimone, A.; Wetzstein, G.; Hirsch, M.; Lanman, D.; Raskar, R.; Fuchs, H. Focus 3D: Compressive accommodation display. ACM Trans. Graph. 2013, 32, 1–13. [Google Scholar] [CrossRef]
- Deng, H.; Wang, Q.-H.; Luo, C.-G.; Liu, C.-L.; Li, C. Accommodation and convergence in integral imaging 3D display. J. Soc. Inf. Disp. 2014, 22, 158–162. [Google Scholar] [CrossRef]
- Hiura, H.; Komine, K.; Arai, J.; Mishina, T. Measurement of static convergence and accommodation responses to images of integral photography and binocular stereoscopy. Opt. Express 2017, 25, 3454–3468. [Google Scholar] [CrossRef] [PubMed]
- Alhaag, M.H.; Ramadan, M.Z. Using electromyography responses to investigate the effects of the display type, viewing distance, and viewing time on visual fatigue. Displays 2017, 49, 51–58. [Google Scholar] [CrossRef]
- Ukai, K.; Howarth, P.A. Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations. Displays 2008, 29, 106–116. [Google Scholar] [CrossRef]
- Suzuki, Y.; Onda, Y.; Katada, S.; Ino, S.; Ifukube, T. Effects of an eyeglass-free 3D display on the human visual system. Jpn. J. Ophthalmol. 2004, 48, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fujikado, T. Asthenopia from the viewpoint of visual information processing-effect of watching 3D images. J. Eye 1997, 14, 1295–1300. [Google Scholar]
- Patterson, R. Review Paper: Human factors of stereo displays: An update. J. Soc. Inf. Disp. 2009, 17, 987–996. [Google Scholar] [CrossRef]
- Seay, A.F.; Krum, D.M.; Hodges, L.; Ribarsky, W. Simulator sickness and presence in a high field-of-view virtual environment. In CHI’02 Extended Abstracts on Human Factors in Computing Systems, Proceedings of the CHI’02 Human Factors in Computing Systems, Minneapolis, MN, USA, 20–25 April 2002; ACM: New York, NY, USA, 2002; pp. 784–785. [Google Scholar]
- Lin, J.W.; Duh, H.B.L.; Parker, D.E.; Abi-Rached, H.; Furness, T.A. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In Proceedings of the IEEE Virtual Reality, Orlando, FL, USA, 24–28 March 2002; pp. 164–171. [Google Scholar]
- Lee, E.C.; Heo, H.; Park, K.R. The comparative measurements of eyestrain caused by 2D and 3D displays. IEEE Trans. Consum. Electron. 2010, 56, 1677–1683. [Google Scholar] [CrossRef]
Variables | Specifications | Variables | Specifications |
---|---|---|---|
Size | 50 in | Diagonal | 126 cm |
Resolution | 1920 × 1080 pixels | Width | 112.7 cm |
Height | 65 cm | Refresh rate | 100 Hz |
Aspect ratio | 16:9 | Picture mode | Vivid dynamic |
Backlight | 100 nt | Contrast | 100 nt |
Brightness | 50 nt | Color | 70 nt |
Sharpness | 50 nt | Audio output | 20 W |
Mean (SD) | Statistics | |||||||
---|---|---|---|---|---|---|---|---|
Display | 2D | 3D | Fa | pa | Fb | pb | Ƞ2 | Ƞ2 |
Pre | 1.18 (0.958) | 1.23 (1.03) | 0.051 | 0.822 | 5.911 | 0.004 | 0.136 | 0.001 |
Post | 8.30 (7.94) | 16.20 (12.02) | 11.752 | 0.001 | 0.134 | |||
Distance | 3H | 6H | Fa | pa | Fb | pb | Ƞ2 | Ƞ2 |
Pre | 1.35 (1.00) | 1.05 (0.994) | 1.826 | 0.181 | 0.923 | 0.402 | 0.024 | 0.023 |
Post | 12.8 (11.3) | 11.70 (10.5) | 0.228 | 0.635 | 0.03 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadan, M.Z.; Alhaag, M.H.; Abidi, M.H. Effects of Viewing Displays from Different Distances on Human Visual System. Appl. Sci. 2017, 7, 1153. https://doi.org/10.3390/app7111153
Ramadan MZ, Alhaag MH, Abidi MH. Effects of Viewing Displays from Different Distances on Human Visual System. Applied Sciences. 2017; 7(11):1153. https://doi.org/10.3390/app7111153
Chicago/Turabian StyleRamadan, Mohamed Z., Mohammed H. Alhaag, and Mustufa Haider Abidi. 2017. "Effects of Viewing Displays from Different Distances on Human Visual System" Applied Sciences 7, no. 11: 1153. https://doi.org/10.3390/app7111153
APA StyleRamadan, M. Z., Alhaag, M. H., & Abidi, M. H. (2017). Effects of Viewing Displays from Different Distances on Human Visual System. Applied Sciences, 7(11), 1153. https://doi.org/10.3390/app7111153