Exergy Analysis of Air-Gap Membrane Distillation Systems for Water Purification Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup for the Pilot AGMD System
2.2. Experimental Setup for Bench Scale AGMD
2.3. Exergy Analysis Methods
3. Results and Discussion
Exergy Efficiency of the AGMD Modules
4. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tsatsaronis, G. Definitions and nomenclature in exergy analysis and exergoeconomics. Energy 2007, 32, 249–253. [Google Scholar] [CrossRef]
- Tsatsaronis, G. Thermoeconomic analysis and optimization of energy systems. Prog. Energy Combust. Sci. 1993, 19, 227–257. [Google Scholar] [CrossRef]
- Guillén-Burrieza, E.; Blanco, J.; Zaragoza, G.; Alarcón, D.-C.; Palenzuela, P.; Ibarra, M.; Gernjak, W. Experimental analysis of an air gap membrane distillation solar desalination pilot system. J. Membr. Sci. 2011, 379, 386–396. [Google Scholar] [CrossRef]
- Banat, F.; Jwaied, N. Exergy analysis of desalination by solar-powered membrane distillation units. Desalination 2008, 230, 27–40. [Google Scholar] [CrossRef]
- Koschikowski, J.; Wieghaus, M.; Rommel, M.; Ortin, V.S.; Suarez, B.P.; Betancort Rodríguez, J.R. Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination 2009, 248, 125–131. [Google Scholar] [CrossRef]
- Koschikowski, J.; Wieghaus, M.; Rommel, M. Solar thermal driven desalination plants based on membrane distillation. Desalination 2003, 156, 295–304. [Google Scholar] [CrossRef]
- Khayet, M. Solar desalination by membrane distillation: Dispersion in energy consumption analysis and water production costs (a review). Desalination 2013, 308, 89–101. [Google Scholar] [CrossRef]
- Woldemariam, D.; Kullab, A.; Fortkamp, U.; Magner, J.; Royen, H.; Martin, A. Membrane distillation pilot plant trials with pharmaceutical residues and energy demand analysis. Chem. Eng. J. 2016, 306, 471–483. [Google Scholar] [CrossRef]
- Dow, N.; Gray, S.; Li, J.; Zhang, J.; Ostarcevic, E.; Liubinas, A.; Atherton, P.; Roeszler, G.; Gibbs, A.; Duke, M. Pilot trial of membrane distillation driven by low grade waste heat: Membrane fouling and energy assessment. Desalination 2016, 391, 30–42. [Google Scholar] [CrossRef]
- Jansen, A.E.; Assink, J.W.; Hanemaaijer, J.H.; van Medevoort, J.; van Sonsbeek, E. Development and pilot testing of full-scale membrane distillation modules for deployment of waste heat. Desalination 2013, 323, 55–65. [Google Scholar] [CrossRef]
- Al-Obaidani, S.; Curcio, E.; Macedonio, F.; Di Profio, G.; Al-Hinai, H.; Drioli, E. Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation. J. Memb. Sci. 2008, 323, 85–98. [Google Scholar] [CrossRef]
- Criscuoli, A.; Drioli, E. Energetic and exergetic analysis of an integrated membrane desalination system. Desalination 1999, 124, 243–249. [Google Scholar] [CrossRef]
- Macedonio, F.; Drioli, E. An exergetic analysis of a membrane desalination system. Desalination 2010, 261, 293–299. [Google Scholar] [CrossRef]
- Sow, O.; Siroux, M.; Desmet, B. Energetic and exergetic analysis of a triple-effect distiller driven by solar energy. Desalination 2005, 174, 277–286. [Google Scholar] [CrossRef]
- García-Rodríguez, L.; Gómez-Camacho, C. Exergy analysis of the SOL-14 plant (Plataforma Solar de Almería, Spain). Desalination 2001, 137, 251–258. [Google Scholar] [CrossRef]
- Banat, F.; Jwaied, N.; Rommel, M.; Koschikowski, J.; Wieghaus, M. Desalination by a “compact SMADES” autonomous solarpowered membrane distillation unit. Desalination 2007, 217, 29–37. [Google Scholar] [CrossRef]
- Aljundi, I.H. Second-law analysis of a reverse osmosis plant in Jordan. Desalination 2009, 239, 207–215. [Google Scholar]
- Khan, E.U.; Martin, A.R. Water purification of arsenic-contaminated drinking water via air gap membrane distillation (AGMD). Period. Polytech. Mech. Eng. 2014, 58, 47–53. [Google Scholar] [CrossRef]
- Querol, E.; Gonzalez-Regueral, B.; Perez-Benedito, J.L. Exergy Concept and Determination. In Practical Approach to Exergy and Thermoeconomic Analyses of Industrial Processes; Springer: Heidelberg/Berlin, Germany, 2013; pp. 9–28. [Google Scholar]
- Cerci, Y. Exergy analysis of a reverse osmosis desalination plant in California. Desalination 2002, 142, 257–266. [Google Scholar] [CrossRef]
- Ameri, M.; Eshaghi, M.S. A novel configuration of reverse osmosis, humidification–dehumidification and flat plate collector: Modeling and exergy analysis. Appl. Therm. Eng. 2016, 103, 855–873. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Dincer, I.; Salah El-Emam, R.; Dincer, I.; El-Emam, R.S.; Dincer, I. Thermodynamic and thermoeconomic analyses of seawater reverse osmosis desalination plant with energy recovery. Energy 2014, 64, 154–163. [Google Scholar] [CrossRef]
- Drioli, E.; Curcio, E.; Di Profio, G.; Macedonio, F.; Criscuoli, A. Integrating Membrane Contactors Technology and Pressure-Driven Membrane Operations for Seawater Desalination. Chem. Eng. Res. Des. 2006, 84, 209–220. [Google Scholar] [CrossRef]
Property | Value | |
---|---|---|
Xzero | Elixir500 | |
Reference temperature, K | 288 | |
Reference pressure, MPa | 0.1 | |
Membrane area, m2 | 4.6 | 0.19 |
Feed rate, L/min | 20 | 3.8 |
Coolant rate, L/min | 20 | 1.9 |
Feed temperature, K | 353 | 338–353 |
Coolant temperature, K | 288–328 | |
TDS of feed and coolant, g/L | 0.25 | 0.36 |
Process | Capacity, m3/day | Exergy Efficiency, % | Reference |
---|---|---|---|
RO | 7250 | 4.3 | [20] |
RO | 2850 | 0.72 | [21] |
SWRO | 7586 | 5.82 | [22] |
MF-NF-RO | 12,408 | 30.9 | [23] |
MD on RO retentate | 22,344 | 19.1–21.9 | [23] |
MD | 0.31 | 0.3 | [4] |
DCMD with HR | 24,000 | 28.3 | [11] |
DCMD without HR | 24,000 | 25.6 | [11] |
AGMD (Xzero) | 0.22–0.73 | 8.54–19.32 | (This study) |
AGMD (Elixir500) | 0.1–0.17 | 18.3–26.5 | (This study) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woldemariam, D.; Martin, A.; Santarelli, M. Exergy Analysis of Air-Gap Membrane Distillation Systems for Water Purification Applications. Appl. Sci. 2017, 7, 301. https://doi.org/10.3390/app7030301
Woldemariam D, Martin A, Santarelli M. Exergy Analysis of Air-Gap Membrane Distillation Systems for Water Purification Applications. Applied Sciences. 2017; 7(3):301. https://doi.org/10.3390/app7030301
Chicago/Turabian StyleWoldemariam, Daniel, Andrew Martin, and Massimo Santarelli. 2017. "Exergy Analysis of Air-Gap Membrane Distillation Systems for Water Purification Applications" Applied Sciences 7, no. 3: 301. https://doi.org/10.3390/app7030301
APA StyleWoldemariam, D., Martin, A., & Santarelli, M. (2017). Exergy Analysis of Air-Gap Membrane Distillation Systems for Water Purification Applications. Applied Sciences, 7(3), 301. https://doi.org/10.3390/app7030301