A Wideband High-Voltage Power Amplifier Post-Linearizer for Medical Ultrasound Transducers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental Performance Verification of the HVPA with Post-Linearizer
3.2. Performance of the Pulse-Echo Response of the Ultrasound Bio-Microscopy (UBM) System
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, J.; Shung, K.K. Radiation forces exerted on arbitrarily located sphere by acoustic tweezer. J. Acoust. Soc. Am. 2006, 120, 1084–1094. [Google Scholar] [CrossRef] [PubMed]
- Blitz, J.; Simpson, G. Ultrasonic Methods of Non-Destructive Testing; Springer: Berlin, Germany, 1995; Volume 2. [Google Scholar]
- Lee, S.-H.; Jeong, H.-H.; Bae, S.-B.; Choi, H.-C.; Lee, J.-H.; Lee, Y.-H. Epitaxially grown gan thin-film saw filter with high velocity and low insertion loss. IEEE Trans. Electron. Devices 2001, 48, 524–529. [Google Scholar]
- Ritter, T.A.; Shrout, T.R.; Tutwiler, R.; Shung, K.K. A 30-MHz piezo-composite ultrasound array for medical imaging applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Guo, J.; He, C.; Geng, H.; Yu, G.; Li, J.; Zheng, H.; Ji, X.; Yan, F. Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles. Sci. Rep. 2016, 6, 21683. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, P.R.; Martin, K.; Thrush, A. Diagnostic Ultrasound: Physics and Equipment; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Szabo, T.L. Diagnostic Ultrasound Imaging: Inside Out; Elsevier Academic Press: London, UK, 2004. [Google Scholar]
- Zhu, B.; Chan, N.Y.; Dai, J.; Shung, K.K.; Takeuchi, S.; Zhou, Q. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 854–857. [Google Scholar] [CrossRef] [PubMed]
- Kirk Shung, K.; Smith, M.B.; Tusi, B.M.W. Principles of Medical Imaging; Academic Press, Inc.: San Diego, CA, USA, 1992. [Google Scholar]
- Shung, K.K. Diagnostic Ultrasound: Imaging and Blood Flow Measurements; Taylor & Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ketterling, J.A.; Aristizabal, O.; Turnbull, D.H.; Lizzi, F.L. Design and fabrication of a 40-MHz annular array transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 672–681. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zheng, F.; Ma, Y.; Kim, H.H.; Zhou, Q.; Shung, K.K. A sidelobe suppressing near-field beamforming approach for ultrasound array imaging. J. Acoust. Soc. Am. 2015, 137, 2785–2790. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lau, S.; Wu, D.; Shung, K.K. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 2011, 56, 139–174. [Google Scholar] [CrossRef] [PubMed]
- Shung, K.K.; Zippuro, M. Ultrasonic transducers and arrays. IEEE Eng. Med. Biol. Mag. 1996, 15, 20–30. [Google Scholar] [CrossRef]
- Tranquart, F.; Grenier, N.; Eder, V.; Pourcelot, L. Clinical use of ultrasound tissue harmonic imaging. Ultrasound Med. Biol. 1999, 25, 889–894. [Google Scholar] [CrossRef]
- Choudhry, S.; Gorman, B.; Charboneau, J.W.; Tradup, D.J.; Beck, R.J.; Kofler, J.M.; Groth, D.S. Comparison of tissue harmonic imaging with conventional US in abdominal disease 1. Radiographics 2000, 20, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Pasovic, M.; Danilouchkine, M.; Matte, G.; van der Steen, A.F.; Basset, O.; de Jong, N.; Cachard, C. Broadband reduction of the second harmonic distortion during nonlinear ultrasound wave propagation. Ultrasound Med. Biol. 2010, 36, 1568–1580. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Kim, S.; Sohn, H.-Y.; Song, T.-K.; Yoo, Y.M. Coded excitation for ultrasound tissue harmonic imaging. Ultrasonics 2010, 50, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Katz, A. Linearization: Reducing distortion in power amplifiers. IEEE Microw. Mag. 2001, 2, 37–49. [Google Scholar] [CrossRef]
- Aparin, V. Linearization of CDMA Receiver Front-Ends. Ph.D. Dissertation, University of California, San Diego, CA, USA, 2005. [Google Scholar]
- Zwiebel, W.J.; Pellerito, J.S. Introduction to Vascular Ultrasonography; Elsevier Saunders Philadelphia: Philadelphia, PA, USA, 2005. [Google Scholar]
- Kirkhorn, J.; Frinking, P.J.; de Jong, N.; Torp, H. Three-stage approach to ultrasound contrast detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Simpson, D.H.; Chin, C.T.; Burns, P.N. Pulse inversion doppler: A new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1999, 46, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-C.; Li, P.-C. Pulse-inversion-based fundamental imaging for contrast detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 1124–1133. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Hamilton, J.D.; O’Donnell, M. Suppression of propagating second harmonic in ultrasound contrast imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Gui, P. A look-up-table digital predistortion technique for high-voltage power amplifiers in ultrasonic applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59. [Google Scholar] [CrossRef]
- Cannata, J.M.; Williams, J.A.; Zhou, Q.; Ritter, T.A.; Shung, K.K. Development of a 35-MHz piezo-composite ultrasound array for medical imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2006, 53, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Vuolevi, J.; Rahkonen, T. Distortion in RF Power Amplifiers; Artech House: London, UK, 2003. [Google Scholar]
- Lee, T.H. The Design of CMOS Radio-Frequency Integrated Circuits; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Cripps, S.C. Advanced Techniques in RF Power Amplifier Design; Artech House: London, UK, 2002. [Google Scholar]
- Gundersenk, M.; Kuthi, A.; Behrend, M.; Vernier, T. Bipolar Nanosecond Pulse Generation Using Transmission Lines for Cell Electro-Manipulation. Proceedings of IEEE Power Modulator Symposium, San Francisco, CA, USA, 23–26 May 2004; pp. 224–227. [Google Scholar]
- Kazimierczuk, M.K. RF Power Amplifier; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Zhu, B.; Han, J.; Shi, J.; Shung, K.K.; Wei, Q.; Huang, Y.; Kosec, M.; Zhou, Q. Lift-off pmn-pt thick film for high frequency ultrasonic biomicroscopy. J. Am. Ceram. Soc. Am. Ceram. Soc. 2010, 93, 2929–2931. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Yoon, C.; Yeom, J.-Y. A Wideband High-Voltage Power Amplifier Post-Linearizer for Medical Ultrasound Transducers. Appl. Sci. 2017, 7, 354. https://doi.org/10.3390/app7040354
Choi H, Yoon C, Yeom J-Y. A Wideband High-Voltage Power Amplifier Post-Linearizer for Medical Ultrasound Transducers. Applied Sciences. 2017; 7(4):354. https://doi.org/10.3390/app7040354
Chicago/Turabian StyleChoi, Hojong, Changhan Yoon, and Jung-Yeol Yeom. 2017. "A Wideband High-Voltage Power Amplifier Post-Linearizer for Medical Ultrasound Transducers" Applied Sciences 7, no. 4: 354. https://doi.org/10.3390/app7040354
APA StyleChoi, H., Yoon, C., & Yeom, J. -Y. (2017). A Wideband High-Voltage Power Amplifier Post-Linearizer for Medical Ultrasound Transducers. Applied Sciences, 7(4), 354. https://doi.org/10.3390/app7040354