A State of the Art Review of Modal-Based Damage Detection in Bridges: Development, Challenges, and Solutions
Abstract
:1. Introduction
2. Modal Based Damage Detection: Development & Challenges
2.1. Development of Modal-Based Damage Sensitive Features
2.1.1. Natural Frequencies
2.1.2. Modal Damping
2.1.3. Mode Shapes
2.1.4. Modal Curvatures
2.1.5. Modal Strain Energy
2.1.6. Modal Flexibility
2.1.7. Summation of Modal-Based Damage Sensitive Features
2.2. Problematic Effects of Environmental & Operational Conditions
3. Advancements and Alternatives to Modal-Based Damage Identification
- Problematic influence of environmental & operational effects;
- Inefficient utilization of machine learning algorithms for damage detection;
- Over-reliance on modal-based damage sensitive features.
3.1. Advancements to Environmental & Operational Challenges
3.1.1. Regression Models
3.1.2. Pattern Recognition Methods
3.1.3. Advancements to Operational Specific Challenges
3.2. Advancements to Machine Learning Methodologies for Damage Indentification
3.3. Non-Modal Damage Sensitive Features
3.3.1. Vibration Based Damage Sensitive Features
3.3.2. Time Series Based Damage Sensitive Features
4. Summary
- Problematic influence of environmental & operational effects;
- Inefficient utilization of machine learning algorithms for damage detection;
- Over-reliance on modal-based damage sensitive features.
Acknowledgments
Conflicts of Interest
References
- Rodrigues, F.; Casas, J.R.; Almeida, P. Fatigue-Safety assessment of RC bridges: Application to the Brazilian highway network. Struct. Infrastruct. Eng. 2013, 9, 601–616. [Google Scholar] [CrossRef]
- Everett, T.; Weykamp, P.; Capers, H.; Cox, W.; Drda, T.; Hummel, L.; Jensen, P.; Juntunen, D.; Kimball, T.; Washer, G. Bridge Evaluation Quality Assurance in Europe; Technical report Document, FHWA-PL-08-016; U.S.D.O.T.: Washington, DC, USA.
- Casas, J.R. European Standardization of Quality Specification for Roadway Bridges: An Overview. In Proceedings of the 8th International Conference on Bridge Maintenance, Safety and Management, Foz do Iguaçu, Brazil, 26–30 June 2016. [Google Scholar]
- Matos, J.; Casas, J.R.; Fernades, S. COST Action TU1406 quality specifications for roadway bridges (BridgeSpec). In Proceedings of the 8th International Conference on Bridge Maintenance, Safety and Management, Foz do Iguaçu, Brazil, 26–30 June 2016. [Google Scholar]
- Elfgren, L. Benchmark of new technologies to extend the life of elderly rail infrastructure : Deliverable D1.1 of the MAINLINE Project. 2013. [Google Scholar]
- Krieger, J.; Holst, R. Aging highway bridges—Challenges for owners and operators. In Proceedings of the 8th International Conference on Bridge Maintenance, Safety and Management, Foz do Iguaçu, Brazil, 26–30 June 2016. [Google Scholar]
- Casas, J.R. Assessment and monitoring of existing bridges to avoid unnecessary strengthening or replacement. In Proceedings of the International IABMAS Conference on Bridge Maintenance, Safety and Management, 11–15 July 2010; CRC Press: Philadelphia, PA, USA, 2010; pp. 2261–2269. [Google Scholar]
- Frangopol, D.M.; Saydam, D.; Kim, S. Maintenance, management, life-cycle design and performance of structures and infrastructures: A brief review. Struct. Infrastruct. Eng. 2015, 8, 1–25. [Google Scholar] [CrossRef]
- Wang, C.H.; Chen, W.Z.; Chen, A.R. Damage safety assessment and maintenance management strategy of bridges. J. Traffic Transp. Eng. 2002, 2, 21–28. [Google Scholar]
- Catbas, F.N.; Susoy, M.; Frangopol, D.M. Structural health monitoring and reliability estimation: Long span truss bridge application with environmental monitoring data. Eng. Struct. 2008, 30, 2347–2359. [Google Scholar] [CrossRef]
- Xia, H.W.; Ni, Y.Q.; Wong, K.Y.; Ko, J.M. Reliability-based condition assessment of in-service bridges using mixture distribution models. Comput. Struct. 2012, 106–170, 204–213. [Google Scholar] [CrossRef]
- Chen, X.; Omenzetter, P. A Framework for Reliability Assessment of an in-Service Bridge Using Structural Health Monitoring Data. Key Eng. Mater. 2013, 558, 39–51. [Google Scholar] [CrossRef]
- Frangopol, D.M.; Strauss, A.; Kim, S. Bridge reliability assessment based on monitoring. J. Bridge Eng. 2008, 13, 258–270. [Google Scholar] [CrossRef]
- Mori, Y.; Ellingwood, B. Methodology for Reliability Based Condition Assessment: Application to Concrete Structures in Nuclear Plants; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1993.
- Enright, M.P.; Frangopol, D.M. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion. Eng. Struct. 1998, 20, 960–971. [Google Scholar] [CrossRef]
- Yang, D.Y.; Frangopol, D.M.; Teng, J.G. Reliability-Based Scheduling and Selection of Maintenance Actions with Application to the FRP Strengthening of RC Bridge Girders. In Proceedings of the 8th International Conference on Bridge Maintenance, Safety and Management, Foz do Iguaçu, Brazil, 26–30 June 2016. [Google Scholar]
- Barone, G.; Frangopol, D.M. Reliability, risk and lifetime distributions as performance indicators for lifecycle maintenance of deteriorating structures. Reliab. Eng. Syst. Saf. 2014, 123, 21–37. [Google Scholar] [CrossRef]
- Doebling, S.; Farrar, C.R.; Prime, M.B.; Shevitz, D. Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review; Los Alamos National Laboratory Report LA-13070-MS; Los Alamos National Laboratory: Los Alamos, NM, USA, 1996.
- Doebling, S.; Farrar, C.R.; Prime, M.B. A summary of vibration-based damage identification methods. Shock Vib. Dig. 1998, 30, 91–105. [Google Scholar] [CrossRef]
- Chang, P.C.; Flatau, A.; Liu, S.C. Health Monitoring of Civil Infrastructure. Struct. Health Monit. 2003, 2, 257–267. [Google Scholar] [CrossRef]
- Sohn, H.; Farrar, C.R.; Hemez, F.; Czarnecki, J. A Review of Structural Health Monitoring Literature from 1996–2001; Los Alamos National Laboratory Report LA-13976-MS; Los Alamos National Laboratory: Los Alamos, NM, USA, 2003.
- Carden, E.P.; Fanning, P. Vibration Based Condition Monitoring: A Review. Struct. Health Monit. 2004, 3, 355–377. [Google Scholar] [CrossRef]
- Barke, D.; Chiu, W.K. Structural Health Monitoring in the Railway Industry: A Review. Struct. Health Monit. 2005, 4, 81–93. [Google Scholar] [CrossRef]
- Ou, J.; Li, H. Structural Health Monitoring in mainland China: Review and Future. Struct. Health Monit. 2010, 9, 219–231. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. An Introduction to Structural Health Monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Roshan, P.; Kumar, A.; Tewatia, D.; Pal, S. Review Paper on Structural Health Monitoring: Its Benefit and Scope in India. J. Civ. Eng. Environ. Technol. 2015, 2, 109–112. [Google Scholar]
- Li, H.N.; Yi, T.H.; Ren, L.; Li, D.S.; Huo, L.S. Reviews on innovations and applications in structural health monitoring for infrastructures. Struct. Monit. Maint. 2014, 1, 1–45. [Google Scholar] [CrossRef]
- Yan, Y.J.; Cheng, L.; Wu, Z.Y.; Yam, L.H. Development in vibration-based structural damage detection techniques. Mech. Syst. Signal Process. 2007, 21, 2198–2211. [Google Scholar] [CrossRef]
- Rytter, A. Vibration Based Inspection of Civil Engineering Structures. Ph.D. Thesis, University of Aalborg, Aalborg, Denmark, 1993. [Google Scholar]
- Limongelli, M.P.; Chatzi, E.; Dohler, M.; Lombaert, G.; Reynders, E. Towards extraction of vibration-based damage indicators. In Proceedings of the 8th European Workshop on Structural Health Monitoring (EWSHM 2016), Spain, Bilbao, 5–8 July 2016. [Google Scholar]
- Adams, R.D.; Cawley, P.; Pye, C.J.; Stone, B.J. A vibration technique for non-destructively assessing the integrity of structures. J. Mech. Eng. Sci. 1978, 20, 93–100. [Google Scholar] [CrossRef]
- Cawley, P.; Adams, R.D. The location of defects in structures from measurements of natural frequencies. J. Strain Anal. 1979, 14, 49–57. [Google Scholar] [CrossRef]
- Salawu, O.S. Detection of structural damage through changes in frequency: A review. Eng. Struct. 1997, 19, 718–723. [Google Scholar] [CrossRef]
- Lee, Y.S.; Chung, M.J. A study on crack detection using eigenfrequency test data. Comput. Struct. 2000, 77, 327–342. [Google Scholar] [CrossRef]
- Kim, J.T.; Ryu, Y.S.; Cho, H.M.; Stubbs, N. Damage identification in beam-type structures: Frequency-based method vs. mode-shape based method. Eng. Struct. 2003, 25, 57–67. [Google Scholar] [CrossRef]
- Casas, J.R.; Aparicio, A.C. Structural damage identification from dynamic-test data. J. Struct. Eng. 1995, 120, 2437–2450. [Google Scholar] [CrossRef]
- Vestroni, F.; Capecchi, D. Damage evaluation in cracked vibrating beams using experimental frequencies and finite element models. J. Vib. Control 1996, 2, 69–86. [Google Scholar] [CrossRef]
- Pau, A.; Greco, A.; Vestroni, F. Numerical and experimental detection of concentrated damage in a parabolic arch by measured frequency variations. J. Vib. Control 2011, 17, 605–614. [Google Scholar] [CrossRef]
- Jeary, A.P.; Ellis, B.R. Non-destructive in-situ testing using dynamic techniques. In Proceedings of the 3rd International Conference on Tall Buildings, Hong Kong, China, 10–15 December 1984; pp. 76–81. [Google Scholar]
- Yamaguchi, H.; Matsumoto, Y.; Kawarai, K.; Dammika, A.J.; Shahzad, S.; Takanami, R. Damage detection based on modal damping change in bridges. In Proceedings of the ICSBE’12, Kandy, Sri Lanka, 14–16 December 2013. [Google Scholar]
- William, C.; Salawu, O.S. Damping as a damage indication parameter. In Proceedings of the 15th International Modal Analysis Conference, Tokyo, Japan, 1–4 September 1997; pp. 1531–1536. [Google Scholar]
- Farrar, C.R.; Baker, W.E.; Dove, R.C. Dynamic parameter similitude for concrete models. ACI Struct. J. 1994, 91, 90–99. [Google Scholar]
- Eyre, R.; Tily, G.P. Damping measurements on steel and composite bridges. In Proceedings of the DOE and DOT TRRL Symposium on Dynamic Behaviour of Bridges, Crowthorne, UK, 19 May 1977. [Google Scholar]
- Farrar, C.R.; James, G.H. System identification from ambient vibration measurements on a bridge. J. Sound Vib. 1997, 205, 1–18. [Google Scholar] [CrossRef]
- Allemang, R.J.; Brown, D.L. A correlation coefficient for modal vector analysis. In Proceedings of the 1st SEM International Modal Analysis Conference, Orlando, FL, USA, 8–10 November 1982. [Google Scholar]
- Kim, J.H.; Jeon, H.S.; Lee, C.W. Application of the modal assurance criteria for detecting and locating structural faults. In Proceedings of the 10th International Modal Analysis Conference, San Diego, CA, USA, 3–7 February 1992; pp. 536–540. [Google Scholar]
- Salawu, O.S.; Williams, C. Bridge assessment using forced-vibration testing. J. Struct. Eng. 1995, 121, 161–173. [Google Scholar] [CrossRef]
- Salgado, R.; Cruz, P.J.S.; Ramos, L.F.; Lourenco, P.B. Comparison between damage detection methods applied to beam structures. In Proceedings of the IABMAS’06, Porto, PT, USA, 16–19 July 2006. [Google Scholar]
- Balsamo, L.; Mukhopadhyay, S.; Betti, R.; Lus, H. Damage Detection Using Flexibility Proportional Coordinate Modal Assurance Criterion. In Topics in Modal Analysis; Springer: New York, NY, USA, 2013; Volume 7. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, L. Structural damage identification based on the modal data change. Int. J. Eng. Manuf. 2012, 4, 59–66. [Google Scholar] [CrossRef]
- Pandey, A.K.; Biswas, M.; Samman, M.M. Damage detection from changes in curvature mode shapes. J. Sound Vib. 1991, 145, 321–332. [Google Scholar] [CrossRef]
- Abdel Wahab, M.M.; de Roeck, G. Damage detection in bridges using modal curvatures: Application to a real damage scenario. J. Sound Vib. 1999, 226, 217–235. [Google Scholar] [CrossRef]
- Ho, Y.K.; Ewins, D.J. On structural damage identification with mode shapes. In Proceedings of the European COST F3 Conference on System Identification & Structural Health Monitoring, Madrid, Spain, 6–9 June 2000; pp. 677–684. [Google Scholar]
- Farrar, C.R.; Worden, K. Structural Health Monitoring—A Machine Learning Perspective, 1st ed.; John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, 2013; ISBN 978-1-119-99433-6. [Google Scholar]
- Hamming, R. Digital Filters, 3rd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1989; ISBN 10: 0132128128. [Google Scholar]
- Sazonov, E.; Klinkhachorn, P. Optimal spatial sampling interval for damage detection by curvature or stain energy mode shapes. J. Sound Vib. 2005, 285, 783–801. [Google Scholar] [CrossRef]
- Chance, J.; Tomlinson, G.R.; Worden, K. A simplified approach to the numerical and experimental modelling of the dynamics of a cracked beam. In Proceedings of the 12th International Modal Conference, 31 January–3 February 1994; pp. 778–785. [Google Scholar]
- Capecchi, D.; Ciambella, J.; Pau, A.; Vestroni, F. Damage identification in a parabolic arch by means of modal frequencies, shapes and curvatures. Meccanica 2016, 51, 2847–2859. [Google Scholar] [CrossRef]
- Stubbs, N.; Kim, J.T.; Topole, K. An efficient and robust algorithm for damage localization in offshore platforms. In Proceedings of the ASCE 10th Structures Congress, 13–15 April 1992; pp. 543–546. [Google Scholar]
- Yam, L.H.; Leung, T.P.; Li, D.B.; Xue, K.Z. Theoretical and experimental study of modal analysis. J. Sound Vib. 1996, 191, 251–260. [Google Scholar] [CrossRef]
- Cornwell, P.; Doebling, S.; Farrar, C. A strain-energy-based damage detection method for plate-like structures. J. Sound Vib. 1999, 224, 359–374. [Google Scholar] [CrossRef]
- Duffey, T.; Doebling, S.; Farrar, C.; Baker, W.E.; Rhee, W.H. Vibration-based damage identification in structures exhibiting axial and torsional response. J. Vib. Acoust. 2001, 123, 84–91. [Google Scholar] [CrossRef]
- Pandey, A.K.; Biswas, M. Damage detection in structures using changes in flexibility. J. Sound Vib. 1994, 169, 223–236. [Google Scholar] [CrossRef]
- Toksoy, T.; Aktan, A. Bridge-condition assessment by modal flexibility. Exp. Mech. 1994, 34, 271–278. [Google Scholar] [CrossRef]
- Wang, J.Y.; Ko, J.M.; Ni, Y.Q. Modal sensitivity analysis of Tsing Ma Bridge for structural damage detection. In Proceedings of the SPIE’s 5th Annual International Symposium on Nondestructive Evaluation and Health Monitoring of Aging Infrastructure, International Society for Optics and Photonics, 5–9 March 2000; pp. 300–311. [Google Scholar]
- Shih, H.W.; Thambiratnam, D.; Chan, T.H.T. Vibration based structural damage detection in flexural members using multi-criteria approach. J. Sound Vib. 2009, 323, 645–661. [Google Scholar] [CrossRef]
- Doebling, S.W.; Farrar, C.R. Computation of structural flexibility for bridge health monitoring using ambient modal data. In Proceedings of the 11th ASCE Engineering Mechanics Conference, Fort Lauderdale, FL, USA, 20–22 May 1996; pp. 1114–1117. [Google Scholar]
- Gao, Y.; Spencer, B. Damage localization under ambient vibration using changes in flexibility. Earthq. Eng. Eng. Vib. 2002, 1, 136–144. [Google Scholar] [CrossRef]
- Zhang, Z.; Aktan, A.E. The damage indices for constructed facilities. In Proceedings of the International Modal Analysis Conference, Nashville, TN, USA, 13–16 February 1995; Volume 13, pp. 1520–1529. [Google Scholar]
- Lu, Q.; Ren, G.; Zhao, Y. Multiple damage location with flexibility curvature and relative frequency change for beam structures. J. Sound Vib. 2002, 253, 1101–1114. [Google Scholar] [CrossRef]
- Talebinejad, I.; Fischer, C.; Ansari, F. Numerical Evaluation of vibration-based methods for damage assessment of cable-stayed bridges. Comput.-Aided Civ. Infrastruct. Eng. 2011, 26, 239–251. [Google Scholar] [CrossRef]
- Ndambi, J.M.; Vantomme, J.; Harri, K. Damage assessment in reinforced concrete beams using eigenfrequencies and mode shape derivatives. Eng. Struct. 2002, 24, 501–515. [Google Scholar] [CrossRef]
- Cruz, P.J.S.; Salgado, R. Performance of Vibration-Based Damage Detection Methods in Bridges. Comput.-Aided Civ. Infrastruct. Eng. 2008, 24, 62–79. [Google Scholar] [CrossRef]
- Fan, W.; Qiao, P. Vibration-based Damage Identification Methods: A Review and Comparative Study. Struct. Health Monit. 2011, 10, 83–111. [Google Scholar] [CrossRef]
- Peeters, B.; Roeck, G.D. One-year monitoring of the Z24-Bridge: Environmental effects versus damage events. Earthq. Eng. Struct. Dyn. 2001, 30, 149–171. [Google Scholar] [CrossRef]
- Askegaard, V.; Mossing, P. Long term observation of RC-bridge using changes in natural frequency. Nord. Concr. Res. 1988, 7, 20–27. [Google Scholar]
- Cornwell, P.; Farrar, C.R.; Doebling, S.W.; Shoh, H. Environmental variability of modal properties. Exp. Tech. 1999, 23, 45–48. [Google Scholar] [CrossRef]
- Xu, Y.L.; Chen, B.; Ng, C.L.; Wong, K.Y.; Chan, W.Y. Monitoring temperature effect on a long suspension bridge. Struct. Control Health Monit. 2010, 17, 632–653. [Google Scholar] [CrossRef]
- Kim, J.T.; Park, J.H.; Lee, B.J. Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions. Eng. Struct. 2007, 29, 1354–1365. [Google Scholar] [CrossRef]
- Giraldo, D.F.; Dyke, S.J.; Caicedo, J.M. Damage detection accommodating varying environmental conditions. Struct. Health Monit. 2006, 5, 155–172. [Google Scholar] [CrossRef]
- Xia, Y.; Hao, H.; Zanardo, G.; Deeks, A.J. Long term vibration monitoring of a RC slab: Temperature and humidity effects. Eng. Struct. 2006, 28, 441–452. [Google Scholar] [CrossRef]
- Farrar, C.R.; Baker, W.E.; Bell, T.M.; Cone, K.M.; Darling, T.W.; Duffey, T.A.; Eklund, A.; Migliori, A. Dynamic Characterization and Damage Detection in the I-40 Bridge over the Rio Grande; Los Alamos National Laboratory Report: LA-12767-MS; LANL: Los Alamos, NM, USA, 1994. [CrossRef]
- Cross, E.J.; Koo, K.Y.; Brownjohn, J.M.W.; Worden, K. Long-term Monitoring and Data Analysis of the Tamar Bridge. Mech. Syst. Signal Process. 2013, 35, 16–34. [Google Scholar] [CrossRef]
- Soyoz, S.; Feng, M.Q. Long-term Monitoring and Identification of Bridge Structural Parameters. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 82–92. [Google Scholar] [CrossRef]
- Kim, C.W.; Kawatani, M.; Hao, J. Modal parameter identification of short span bridges under a moving vehicle by means of multivariate AR model. Struct. Infrastruct. Eng. 2012, 8, 459–472. [Google Scholar] [CrossRef]
- Kim, C.Y.; Jung, D.S.; Kim, N.S.; Yoon, J.G. Effect of vehicle mass on the measured dynamic characteristics of bridges from traffic-induced test. In Proceedings of the IMAC XIX—19th International Modal Analysis, Los Angeles, CA, USA, 5–8 February 2001; pp. 1106–1110. [Google Scholar]
- De Roeck, G.; Maeck, J.; Michielsen, T.; Seynaeve, E. Traffic-induced shifts in modal properties of bridges. Proc. Soc. Photo-Opt. Instrum. Eng. 2002, 4753, 630–636. [Google Scholar]
- Zhang, Q.W.; Fan, L.C.; Yuan, W.C. Traffic-induced variability in dynamic properties of cable-stayed bridge. Earthq. Eng. Struct. Dyn. 2002, 31, 2015–2021. [Google Scholar] [CrossRef]
- Zhou, G.D.; Yi, T.H. A summary review of correlations between temperatures and vibration properties of long-span bridges. Math. Probl. Eng. 2014, 2014. [Google Scholar] [CrossRef]
- Sohn, H. Effects of environmental and operational variability on structural health monitoring. Philos. Trans. R. Soc. 2007, 365, 539–560. [Google Scholar] [CrossRef] [PubMed]
- Alcover, I.F.; Chryssanthopoulos, M.K.; Andersen, J.E. Regression models for structural health monitoring of welded bridge joints based on temperature, traffic and strain measurements. Struct. Health Monit. 2015, 14, 648–662. [Google Scholar] [CrossRef]
- Song, Y.S.; Ding, Y.L. Fatigue monitoring and analysis of orthotropic steel deck considering traffic volume and ambient temperature. Sci. China Technol. Sci. 2013, 56, 1758–1766. [Google Scholar] [CrossRef]
- Znidaric, A.; Lavric, I.; Kalin, J. Measurements of bridge dynamics with a bridge weigh-in-motion system. In Proceedings of the 5th international Conference on Weigh-in-Motion, Paris, France, 19–22 May 2008; pp. 388–397. [Google Scholar]
- Brady, S.P.; O’Brien, E.J.; Znidaric, A. Effective of vehicle velocity on the dynamic amplification of a vehicle crossing a simply supported bridge. J. Bridge Eng. 2006, 11, 241–249. [Google Scholar] [CrossRef]
- O’Brien, E.J.; Rattigan, P.; Gonzales, A.; Dowling, J.; Znidaric, A. Characteristic dynamic traffic load effects in bridges. Eng. Strucut. 2009, 31, 1607–1612. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, B.; Weng, S.; Ni, Y.Q.; Xu, Y.L. Temperature effect on vibration properties of civil structures: A literature review and case studies. J. Civ. Struct. Health Monit. 2012, 2, 29–46. [Google Scholar] [CrossRef]
- Liu, C.; DeWolf, J.T.; Kim, J.H. Development of a baseline for structural health monitoring for a curved post-tensioned concrete box-girder bridge. Eng. Struct. 2009, 31, 3107–3115. [Google Scholar] [CrossRef]
- Dervilis, N.; Worden, K.; Cross, E.J. On robust regression analysis as a means of exploring environmental and operational conditions for SHM data. J. Sound Vib. 2015, 347, 279–296. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Van Driessen, K. A fast algorithm for the Minimum Covariance Determinant estimator. Technometrics 1999, 41, 212–223. [Google Scholar] [CrossRef]
- Vanlanduit, E.; Parloo, B.; Cauberghe, P.; Verboven, P. A robust singular value decomposition for damage detection under changing operating conditions and structural uncertainties. J. Sound Vib. 2005, 284, 1033–1050. [Google Scholar] [CrossRef]
- Ding, Y.L.; Li, A.Q. Temperature-induced variations of measured modal frequencies of steel box girder for a long-span suspension bridge. Int. J. Steel Struct. 2011, 11, 145–155. [Google Scholar] [CrossRef]
- Macdonald, J.H.G. Identification of the Dynamic Behaviour of a Cable-Stayed Bridge from Full-Scale Testing during and after Construction. Ph.D. Thesis, University of Bristol, Bristol, UK, 2000. [Google Scholar]
- Yan, A.M.; Kerschen, G.; De Boe, P.; Golinval, J.C. Structural damage diagnosis under varying environmental conditions—Part I: A linear analysis. Mech. Syst. Signal Process. 2005, 19, 847–864. [Google Scholar] [CrossRef]
- Yan, A.M.; Kerschen, G.; De Boe, P.; Golinval, J.C. Structural damage diagnosis under changing environmental conditions—Part II: Local PCA for nonlinear cases. Mech. Syst. Signal Process. 2005, 19, 865–880. [Google Scholar] [CrossRef]
- Kullaa, J. Statistical analysis of the damage detection performance under environmental or operational influences. In Proceedings of the 9th International Conference on Structural Dynamics, EURODYN, Porto, Portugal, 30 June–2 July 2014. [Google Scholar]
- Brown, J.D. Principal Components Analysis and Exploratory Factor Analysis—Definitions, Differences and Choices; Shiken: JALT Testing & Evaluation SIG Newsletter: Shizuoka, Japan, 2009. [Google Scholar]
- Kullaa, J. Structural health monitoring under variable environmental or operational conditions. In Proceedings of the Second European Workshop on Structural Health Monitoring, Munich, Germany, 7–9 July 2004; pp. 1262–1269. [Google Scholar]
- Kullaa, J. Vibration-Based Structural Health Monitoring under Variable Environmental or Operational Conditions; Chapter in New Trends in Vibration Based Structural Health Monitoring; Springer: Wien, Austria, 2010; pp. 107–181. [Google Scholar] [CrossRef]
- Deraemaeker, A.; Reynders, E.; De Roeck, G.; Kullaa, J. Vibration-based structural health monitoring using output-only measurements under changing environment. Mech. Syst. Signal Process. 2008, 22, 34–56. [Google Scholar] [CrossRef]
- Lämsä, V.; Raiko, T. Novelty detection by nonlinear factor analysis for structural health monitoring. In Proceedings of the International Workshop on Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop on, Kittilä, Finland, 29 August–1 September 2010; IEEE: Kittilä, Finland; pp. 468–473. [Google Scholar]
- Hsu, T.-Y.; Loh, C.-H. Damage detection accommodating nonlinear environmental effects by nonlinear principal component analysis. Struct. Control Health Monit. 2010, 17, 338–354. [Google Scholar] [CrossRef]
- Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 37, 233–243. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Mahowald, J.; Golinval, J.C.; Maas, S. Damage Detection in Civil Engineering Structure Considering Temperature Effect. Dyn. Civ. Struct. 2014, 4, 187–196. [Google Scholar] [CrossRef]
- Oh, C.K.; Sohn, H.; Bae, I.-H. Statistical novelty detection within the Yeongjong suspension bridge under environmental and operational variations. Smart Mater. Struct. 2009. [Google Scholar] [CrossRef]
- Santos, A.D.; Silva, M.F.M.; Sales, C.S.; Costa, J.C.W.A.; Figueriredo, E. Applicability of linear and nonlinear principal component analysis for damage detection. In Proceedings of the Instrumentation and Measurement Technology Conference (I2MTC), Pisa, Italy, 11–14 May 2015. [Google Scholar]
- Santos, A.; Figueiredo, E.; Silva, M.F.M.; Sales, C.S.; Costa, J.C.W.A. Machine learning algorithms for damage detection: Kernel-based approaches. J. Sound Vib. 2016, 363, 584–599. [Google Scholar] [CrossRef]
- Reynders, E.; Wursten, G.; De Roeck, G. Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification. Struct. Health Monit. 2014, 13, 82–93. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Li, H.; Li, S.L.; Ou, J.P.; Li, H.W. Modal identification of bridges under varying environmental conditions: Temperature and wind effects. Struct. Control Health Monit. 2010, 17, 499–512. [Google Scholar] [CrossRef]
- Jin, C.; Li, J.; Jang, S.; Sun, X.; Christenson, R. Structural damage detection for in-service highway bridge under operational and environmental variability. Sens. Smart Struct. Technol. Civ. Mech. Aerosp. Syst. 2015, 94353A. [Google Scholar] [CrossRef]
- Jin, C.; Jang, S.; Sun, X.; Li, J.; Christenson, R. Damage detection of a highway bridge under severe temperature changes using extended Kalman filter trained neural network. J. Civ. Struct. Health Monit. 2016, 6, 545–560. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Hu, J.W.; Elbeltagi, E. Time-Series and Frequency-Spectrum Correlation Analysis of Bridge Performance Based on a Real-Time Strain Monitoring System. ISPRS Int. J. Geo-Inf. 2016, 5, 61. [Google Scholar] [CrossRef]
- Miao, S.; Koenders, E.; Knobbe, A. Automatic baseline correction of strain gauge signals. Struct. Control Health Monit. 2015, 22, 36–49. [Google Scholar] [CrossRef]
- Follen, C.; Sanayei, M.; Brenner, B.; Vogel, R. Statistical bridge signatures. J. Bridge Eng. 2014. [Google Scholar] [CrossRef]
- Huang, N.E.; Long, S.R.; Shen, Z. The mechanism for frequency downshift in nonlinear wave evolution. Adv. Appl. Mech. 1996, 32, 59–111. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, S.L.; Li, P.Y. Application of Hilbert-Huang transform in structural health monitoring: A state-of-the-art review. Math. Probl. Eng. 2014. [Google Scholar] [CrossRef]
- Aied, H.; González, A.; Cantero, D. Identification of sudden stiffness changes in the acceleration response of a bridge to moving loads using ensemble empirical mode de-composition. Mech. Syst. Signal Process. 2016, 66–67, 314–338. [Google Scholar] [CrossRef]
- Han, J.; Zheng, P.; Wang, H. Structural modal param-eter identification and damage diagnosis based on Hilbert-Huang transform. Earthq. Eng. Eng. Vib. 2014, 13, 101–111. [Google Scholar] [CrossRef]
- Kunwar, A.; Jha, R.; Whelan, M.; Janoyan, K. Damage detection in an experimental bridge model using Hilbert-Huang transform of transient vibrations. Struct. Control Health Monit. 2013, 20, 1–15. [Google Scholar] [CrossRef]
- Moughty, J.J.; Casas, J.R. Evaluation of the Hilbert Huang Transformation of Transient Signals for Bridge Condition Assessment. In Proceedings of the Annual European Safety and Reliability Conference (ESREL 2017), Portoroz, Slovenia, 18–22 June 2017. In press. [Google Scholar]
- Mahalanobis, P.C. On the generalized distance in statistics. In Proceedings of the National Institute of Sciences, Calcutta, India, 16 April 1936; Volume 2, pp. 49–55. [Google Scholar]
- Chang, K.C.; Kim, C.W. Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge. Eng. Struct. 2016, 122, 156–173. [Google Scholar] [CrossRef]
- Taguchi, G.; Jugulum, R. New trends in multivariate diagnosis. Indian J. Stat. 2000, 62, 233–248. [Google Scholar]
- Cudney, E.A.; Hong, J.; Jugulum, R.; Paryani, K.; Ragsdell, K.M.; Taguchi, G. An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition. J. Ind. Syst. Eng. 2007, 1, 139–150. [Google Scholar]
- Moshtagh, N. Minimum volume enclosing ellipsoid. Convex Optim. 2005, 111, 112. [Google Scholar]
- Dervilis, N.; Cross, E.J.; Barthorpe, R.J.; Worden, K. Robust methods of inclusive outlier analysis for structural health monitoring. J. Sound Vib. 2014, 333, 5181–5195. [Google Scholar] [CrossRef]
- Figueiredo, E.; Park, G.; Farrar, C.R.; Worden, K.; Figueiras, J. Machine learning algorithms for damage detection under operational and environmental variability. Int. J. Struct. Health Monit. 2011, 10, 559–572. [Google Scholar] [CrossRef]
- Moughty, J.J.; Casas, J.R. Performance Assessment of Vibration Parameters as Damage Indicators for Bridge Structures under Ambient Excitation. In Proceedings of the X International Conference on Structural Dynamics (EURODYN 2017), Rome, Italy, 10–13 September 2017. In press. [Google Scholar]
- Vienna Consulting Engineers (VCE). Progressive Damage Test S101 Flyover; Technical Report No. 08/2308; VCE: Vienna, Austria, 2009. [Google Scholar]
- Nuttli, O.W. The Relation of Sustained Maximum Ground Acceleration and Velocity to Earthquake Intensity and Magnitude; Miscellaneous Paper S-73-1, Report 16; U.S. Army Corps of Engineers; Waterways Experiment Station: Vicksburg, MS, USA, 1979. [Google Scholar]
- Rathje, E.M.; Faraj, F.; Russell, S.; Bray, J.D. Empirical Relationships for Frequency Content Parameters of Earthquake Ground Motions. Earthq. Spectra 2004, 20, 119–144. [Google Scholar] [CrossRef]
- Kramer, S.L. Geotechnical Earthquake Engineering; Prentice-Hall: Upper Saddle River, NJ, USA, 1996; ISBN 0133749436. [Google Scholar]
- Arias, A. A Measure of Earthquake Intensity. In Seismic Design for Nuclear Power Plants, Hansen, R.J., Ed.; 1st ed.; MIT Press: Cambridge, MA, USA, 1970; pp. 438–483. [Google Scholar]
- Araya, R.; Saragoni, R. Earthquake accelerogram destructiveness potential factor. In Proceedings of the 8th World Conference of Earthquake Engineering, San Francisco, CA, USA, 21–28 July 1984; Volume 2, pp. 835–841. [Google Scholar]
- Koch, H.W. Determining the effects of vibration in buildings. VDIZ 1953, 25, 744–747. [Google Scholar]
- Meixedo, A.; Calçada, R.; Alves, V.; Ribeiro, D.; Cury, A. Damage Identification of a Railway Bridge Based on Genetic Algorithms. In Proceedings of the Eighth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2016), Foz do Iguaçu, Brasil, 26–30 June 2016. [Google Scholar]
- Kaloop, M.R.; Hu, J.W. Stayed-Cable Bridge Damage Detection and Localization Based on Accelerometer Health Monitoring Measurements. Shock Vib. 2015, 2015. [Google Scholar] [CrossRef]
- Casas, J.R.; Rodrigues, F. Bridge condition and safety based on measured vibration level. In Proceedings of the International Association for Bridge and Structural Engineering, Helsinki, Finland, 11–12 February 2015. [Google Scholar]
- Santos, J.P.; Orcesi, A.D.; Cremona, C.; Silverira, P. Baseline-free real-time assessment of structural changes. Struct. Infrastruct. Eng. Maint. Manag. Life-Cycle Des. Perform. 2013. [Google Scholar] [CrossRef]
- Limongelli, M.P. Frequency response function interpolation for damage detection under changing environment. Mech. Syst. Signal Process. 2010, 24, 2898–2913. [Google Scholar] [CrossRef]
- Limongelli, M.P. The Interpolation Damage Detection Method for frames under seismic excitation. J. Sound Vib. 2011, 330, 5474–5489. [Google Scholar] [CrossRef]
- Ramesh Babu, T.; Sekhar, A.S. Detection of two cracks in a rotor-bearing system using amplitude deviation curve. J. Sound Vib. 2008, 314, 457–464. [Google Scholar] [CrossRef]
- Zhang, Y.; Lie, S.T.; Xiang, Z. Damage detection method based on operating deflection shape curvature extracted from dynamic response of a passing vehicle. Mech. Syst. Signal Process. 2013, 35, 238–254. [Google Scholar] [CrossRef]
- Sampaio, R.P.C.; Maia, N.M.M.; Silva, J.M.M. Damage detection using the frequency response function curvature method. J. Sound Vib. 1999, 226, 1029–1042. [Google Scholar] [CrossRef]
- Ratcliffe, C.P. Damage detection using a modified Laplacian operator on mode shape data. J. Sound Vib. 1997, 4, 505–517. [Google Scholar] [CrossRef]
- Ratcliffe, C.P. A frequency and curvature based experimental method for locating damage in structures. J. Vib. Acoust. 2000, 122, 324–329. [Google Scholar] [CrossRef]
- Dilena, M.; Limongelli, M.P.; Morassi, A. Damage localization in bridges via the FRF interpolation method. Mech. Syst. Signal Process. 2015, 52–53, 162–180. [Google Scholar] [CrossRef]
- Figueiredo, E.; Figueiras, J.; Park, G.; Farrar, C.R.; Worden, K. Influence of autoregressive model order on damage detection. Int. J. Comput.-Aided Civ. Infrastruct. Eng. 2011, 26, 225–238. [Google Scholar] [CrossRef]
- Box, G.; Jenkins, G.; Reinsel, G. Time Series Analysis, Forecasting and Control, 3rd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1994; ISBN 978-1-118-67502-1. [Google Scholar]
- Omenzetter, P.; Brownjohn, J.M.W. Application of time series analysis for bridge monitoring. Smart Mater. Struct. 2006, 15, 129–138. [Google Scholar] [CrossRef]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003; ISBN 0521529026. [Google Scholar]
- Yao, R.; Pakzad, S.H. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures. Mech. Syst. Signal Process. 2012, 31, 355–368. [Google Scholar] [CrossRef]
- Gul, M.; Catbas, F.N. Statistical pattern recognition for structural health monitoring using time series modeling: Theory and experimental verifications. Mech. Syst. Sig. Process. 2009, 23, 2192–2204. [Google Scholar] [CrossRef]
- Nair, K.K.; Kiremidjian, A.S. Time Series Based Structural Damage Detection Algorithm Using Gaussian Mixtures Modelling. ASME J. Dyn. Syst. Meas. Control 2007, 129, 258–293. [Google Scholar] [CrossRef]
- Mei, Q.; Gül, M. Novel Sensor Clustering-Based Approach for Simultaneous Detection of Stiffness and Mass Changes Using Output-Only Data. J. Struct. Eng. 2015. [Google Scholar] [CrossRef]
- Bernal, D.; Beck, J. Preface to the special issue on phase I of the IASC-ASCE structural health monitoring benchmark. J. Eng. Mech. 2004, 130. [Google Scholar] [CrossRef]
- Chatzi, E.N.; Spiridonakos, M.D. Dealing with uncertainty in the monitoring of dynamically evolving systems. In Proceedings of the 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII), Torino, Italy, 1–3 July 2015. [Google Scholar]
- Spiridonakos, M.D.; Chatzi, E.N. Metamodeling of structural systems with parametric uncertainty subject to stochastic dynamic excitation. Int. J. Earthq. Eng. Earthq. Eff. Struct. 2015, 8, 915–934. [Google Scholar] [CrossRef]
- Cross, E.J.; Worden, K.; Sturgeon, R.; Chen, Q. A tutorial on cointegration for engineers—A tool for non-stationary time series analysis. In Proceedings of the 10th International Conference on Recent Advances in Structural Dynamics, Southampton, UK, 12–14 July 2010. [Google Scholar]
- Cross, E.J.; Worden, K.; Chen, Q. Cointegration: A novel approach for the removal of environmental trends in structural health monitoring data. Proc. Royal Soc. Lond. Math. Phys. Eng. Sci. 2011, 467, 2712–2732. [Google Scholar] [CrossRef]
- Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models; Oxford University Press: Oxford, UK, 1995; ISBN 9780198774501. [Google Scholar]
- Shi, H.; Worden, K.; Cross, E.J. A nonlinear cointegration approach with applications to structural health monitoring. J. Phys. Conf. Ser. 2016. [Google Scholar] [CrossRef]
Level | Label | Description |
---|---|---|
1 | Detection | Detection of damage in structure |
2 | Localization | Localization of detected damage |
3 | Assessment | Quantification of damage severity |
4 | Prediction | Estimation of remaining service life |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moughty, J.J.; Casas, J.R. A State of the Art Review of Modal-Based Damage Detection in Bridges: Development, Challenges, and Solutions. Appl. Sci. 2017, 7, 510. https://doi.org/10.3390/app7050510
Moughty JJ, Casas JR. A State of the Art Review of Modal-Based Damage Detection in Bridges: Development, Challenges, and Solutions. Applied Sciences. 2017; 7(5):510. https://doi.org/10.3390/app7050510
Chicago/Turabian StyleMoughty, John J., and Joan R. Casas. 2017. "A State of the Art Review of Modal-Based Damage Detection in Bridges: Development, Challenges, and Solutions" Applied Sciences 7, no. 5: 510. https://doi.org/10.3390/app7050510
APA StyleMoughty, J. J., & Casas, J. R. (2017). A State of the Art Review of Modal-Based Damage Detection in Bridges: Development, Challenges, and Solutions. Applied Sciences, 7(5), 510. https://doi.org/10.3390/app7050510