A Statistical Model Updating Method of Beam Structures with Random Parameters under Static Load
Abstract
:1. Introduction
2. New Statistical Model Updating Method
2.1. Initial Equilibrium Equations
2.2. Statistical Model Updating Equation
2.3. Solution of Statistical Model Updating Equation
3. Numerical Examples
3.1. A Simply Supported Beam
3.2. A Two-Span Continuous Beam
4. Model Updating Test
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Banan, M.; Hjelmstad, K. Parameter estimation of structures from static response. I. Computational aspects. J. Struct. Eng. 1994, 120, 3243–3258. [Google Scholar] [CrossRef]
- Banan, M.; Hjelmstad, K. Parameter estimation of structures from static response. II. Numerical simulation studies. J. Struct. Eng. 1994, 120, 3259–3283. [Google Scholar] [CrossRef]
- Simoen, E.; Roeck, G.; Lombaert, G. Dealing with uncertainty in model updating for damage assessment: A review. Mech. Syst. Signal Process 2015, 56–57, 123–149. [Google Scholar] [CrossRef]
- Erdogan, Y.; Gul, M.; Catbas, F.; Bakir, P. Investigation of uncertainty changes in model outputs for finite-element model updating using structural health monitoring data. J. Struct. Eng. 2014, 140, 1–14. [Google Scholar] [CrossRef]
- Sanayei, M.; Imbaro, G.; Mcclain, J.; Brown, L. Structural model updating using experimental static measurements. J. Struct. Eng. 1997, 123, 792–798. [Google Scholar] [CrossRef]
- Sanayei, M.; Onipede, O. Damage assessment of structures using static test data. Aiaa J. 1991, 29, 1174–1179. [Google Scholar] [CrossRef]
- Sanayei, M.; Scampoli, S. Structural element stiffness identification from static test data. J. Eng. Mech. 1991, 117, 1021–1036. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, J.; Nie, J.; Zhang, S. Virtual distortion method-based finite element model updating of bridges by using static deformation. J. Eng. Mech. 2017, 143, 1–9. [Google Scholar] [CrossRef]
- Ren, W.; Fang, S.; Deng, M. Response surface-based finite-element-model updating using structural static responses. J. Eng. Mech. 2011, 137, 248–257. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Liu, Y. A method based on meta-model for updating the finite element model of bridges using the measured static and dynamic data. In Proceedings of the Twelfth COTA International Conference of Transportation Professionals, Beijing, China, 3–6 August 2012; pp. 3175–3186. [Google Scholar]
- Sanayei, M.; Phelps, J.; Sipple, J.; Bell, E.; Brenner, B. Instrumentation, nondestructive testing and finite-element model updating for bridge evaluation using strain measurements. J. Bridge Eng. 2011, 17, 130–138. [Google Scholar] [CrossRef]
- Jacquelin, E.; Adhikari, S.; Friswell, M.I. A second-moment approach for direct probabilistic model updating in structural dynamics. Mech. Syst. Signal Process 2012, 29, 262–283. [Google Scholar] [CrossRef]
- Husain, N.; Khodaparast, H.; Ouyang, H. Parameter selection and stochastic model updating using perturbation methods with parameter weighting matrix assignment. Mech. Syst. Signal Process 2012, 32, 135–152. [Google Scholar] [CrossRef]
- Hua, X.; Ni, Y.; Chen, Z.; Ko, J. An improved perturbation method for stochastic finite element model updating. Int. J. Numer. Meth. Eng. 2008, 73, 1845–1864. [Google Scholar] [CrossRef]
- Govers, Y.; Haddad, H.; Link, M.; Mottershead, J. A comparison of two stochastic model updating methods using the DLR AIRMOD test structure. Mech. Syst. Signal Process 2015, 52–53, 105–114. [Google Scholar] [CrossRef]
- Khodaparast, H.; Mottershead, J.; Friswell, M. Perturbation methods for the estimation of parameter variability in stochastic model updating. Mech. Syst. Signal Process 2008, 22, 1751–1773. [Google Scholar] [CrossRef]
- Boulkaibet, I.; Mthembu, L.; Marwala, T.; Friswell, M.; Adhikari, S. Finite element model updating using the shadow hybrid Monte Carlo technique. Mech. Syst. Signal Process 2015, 52–53, 115–132. [Google Scholar] [CrossRef]
- Hua, X.; Ni, Y.; Chen, Z.; He, X. Monte Carlo study of the effect of measurement noise in model updating with regularization. J. Eng. Mech. 2015, 138, 71–81. [Google Scholar] [CrossRef]
- Wan, H.; Ren, W. Stochastic model updating utilizing Bayesian approach and Gaussian process model. Mech. Syst. Signal Process 2015, 70–71, 245–268. [Google Scholar] [CrossRef]
- Gomes, H.; Broggi, M.; Patelli, E.; Mottershead, J. Model updating by uncertain parameter inference. Vulnerability Uncertain. Risk 2014, 9, 1523–1532. [Google Scholar]
- Beck, J.; Katafygiotis, L. Updating models and their uncertainties. I: Bayesian statistical framework. J. Eng. Mech. 1998, 124, 455–461. [Google Scholar] [CrossRef]
- Katafygiotis, L.; Beck, J. Updating models and their uncertainties. II: Model identifiability. J. Eng. Mech. 1998, 124, 463–467. [Google Scholar] [CrossRef]
- Zárate, B.; Caicedo, J.; Wieger, G.; Marulanda, J. Bayesian finite element model updating using static and dynamic data. In Conference Society for Experimental Mechanics; Springer: New York, NY, USA, 2011; Volume 3, pp. 395–402. [Google Scholar]
- Cheung, S.; Bansal, S. A new Gibbs sampling based algorithm for Bayesian model updating with incomplete complex modal data. Mech. Syst. Signal Process 2017, 92, 156–172. [Google Scholar] [CrossRef]
- Goller, B.; Beck, J.; Schuëller, G. Evidence-based identification of weighting factors in Bayesian model updating using modal data. J. Eng. Mech. 2012, 138, 430–440. [Google Scholar] [CrossRef]
- Beck, J.; Au, S. Bayesian updating of structural models and reliability using Markov chain Monte Carlo Simulation. J. Eng. Mech. 2002, 128, 380–391. [Google Scholar] [CrossRef]
- Huang, B.; Seresh, R.; Zhu, L. Statistical analysis of dynamic characteristic of large span cable-stayed bridge based on high order perturbation stochastic FEM. Adv. Struct. Eng. 2013, 16, 1499–1512. [Google Scholar]
- Mottershead, J.; Friswell, M. Model Updating In Structural Dynamics: A Survey. J. Sound Vib. 1993, 167, 347–375. [Google Scholar] [CrossRef]
- Mottershead, J.; Link, M.; Friswell, M. The sensitivity method in finite element model updating: A tutorial. Mech. Syst. Signal Process 2011, 25, 2275–2296. [Google Scholar] [CrossRef]
- Ghanem, R.; Spanos, P. Stochastic Finite Elements: A Spectral Approach, 1st ed.; Springer: New York, NY, USA, 1991. [Google Scholar]
- Standard for Test Method of Concrete Structures (GB/T50152-2012); China Building Industry Press: Beijing, China, 2012.
Node | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
Mean (mm) | 0.192 | 0.357 | 0.454 | 0.488 | 0.455 | 0.358 | 0.196 |
Standard deviation (×10−2 mm) | 0.576 | 1.071 | 1.362 | 1.464 | 1.365 | 1.074 | 0.588 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Huang, B.; Li, Y.; Pu, W. A Statistical Model Updating Method of Beam Structures with Random Parameters under Static Load. Appl. Sci. 2017, 7, 601. https://doi.org/10.3390/app7060601
Wu Z, Huang B, Li Y, Pu W. A Statistical Model Updating Method of Beam Structures with Random Parameters under Static Load. Applied Sciences. 2017; 7(6):601. https://doi.org/10.3390/app7060601
Chicago/Turabian StyleWu, Zhifeng, Bin Huang, Yejun Li, and Wuchuan Pu. 2017. "A Statistical Model Updating Method of Beam Structures with Random Parameters under Static Load" Applied Sciences 7, no. 6: 601. https://doi.org/10.3390/app7060601
APA StyleWu, Z., Huang, B., Li, Y., & Pu, W. (2017). A Statistical Model Updating Method of Beam Structures with Random Parameters under Static Load. Applied Sciences, 7(6), 601. https://doi.org/10.3390/app7060601