Terawatt-Isolated Attosecond X-ray Pulse Using a Tapered X-ray Free Electron Laser
Abstract
:1. Introduction
2. Scheme
3. Results and Discussion
3.1. Terawatt-Attosecond Hard X-ray Pulse Generation
3.2. Terawatt-Attosecond Soft X-ray Pulse Generation Tables and Schemes
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Emma, P.; Akre, R.; Arthur, J.; Bionta, R. First lasing and operation of an angstrom wavelength free-electron laser. Nat. Photonics 2010, 4, 641–647. [Google Scholar] [CrossRef]
- Altarelli, M.; Brinkmann, R.; Chergui, M.; Decking, W. DESY Report; The European X-ray Free Electron Laser: Schenefeld, Germany, 2006. [Google Scholar]
- Ishikawa, T.; Aoyagi, H.; Asaka, T.; Asano, Y.A. Compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photonics 2012, 6, 540–544. [Google Scholar] [CrossRef]
- Amann, J.; Berg, W.; Blank, V.; Decker, F.J. Demonstration of self-seeding in a Hard-X-ray free-electron laser. Nat. Photonics 2012, 6, 693–698. [Google Scholar] [CrossRef]
- Ko, I.S.; Han, J.H. Current status of PAL-XFEL. In Proceedings of the 2014, 27th Linear Accelerator Conference, Geneva, Switzerland, 31 August–5 September 2014. [Google Scholar]
- Paul, P.M.; Toma, E.S.; Breger, P.; Mullot, G. Observation of a train of attosecond pulses from high harmonic generation. Science 2001, 292, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, M.; Kienberger, R.; Spielmann, C.H.; Reider, G.A. Attosecond Metrology. Nature 2001, 414, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Krausz, F.; Ivanov, M. Attosecond Physics. Rev. Mod. Phys. 2009, 81, 163–234. [Google Scholar] [CrossRef]
- Corkum, P.B.; Krausz, F. Attosecond Science. Nat. Phys. 2007, 3, 381. [Google Scholar] [CrossRef]
- Dunning, D.J.; McNeil, B.W.J.; Thompson, N.R. Towards Zeptosecond-scale pulses from X-ray free-electron lasers. Phys. Procedia 2014, 52, 62–67. [Google Scholar] [CrossRef]
- Fratalocchi, A.; Ruocco, G. Single-molecules imaging with X-ray free-electron lasers: Dream or reality. Phys. Rev. Lett. 2011, 106, 105504. [Google Scholar] [CrossRef] [PubMed]
- Goulielmakis, E.; Loh, Z.H.; Wirth, A.; Santra, R. Real-time observation of valence electron motion. Nature 2010, 466, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Geiseler, H.; Rottke, H.; Zhavoronkov, N.; Sandner, W. Real-Time observation of interference between atomic one-electron and two-electron Excittaions. Phys. Rev. Lett. 2012, 108, 123601. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, M.; Trigo, M.; Chen, J.; Ghimire, S. Anomalous nonlinear X-ray Compton scattering. Nat. Phys. 2015, 11, 964–970. [Google Scholar] [CrossRef]
- Neutze, R.; Wouts, R.; Spoel, D.V.D.; Weckert, E. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 2000, 406, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Inoue, I.; Inubushi, Y.; Sato, T.; Tono, K. Observation of femtosecond X-ray Interactions with matter using an X-ray-X-ray pump-probe scheme. Proc. Natl. Acad Sci. USA 2016, 113, 1492–1497. [Google Scholar] [CrossRef] [PubMed]
- Saldin, E.; Schneidmiller, A.; Yurkov, M.V. A new technique to generate 100 GW-level attosecond X-ray pulses from the X-ray SASE FELs. Opt. Commun. 2004, 239, 161–172. [Google Scholar] [CrossRef]
- Zholents, A.A.; Fawley, W.M. Proposal for intense attosecond radiation from an X-ray free-electron laser. Phys. Rev. Lett. 2004, 92, 224801. [Google Scholar] [CrossRef] [PubMed]
- Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V. Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond X-ray pulses. Phys. Rev. ST Accel. Beams 2006, 9, 050702. [Google Scholar] [CrossRef]
- Zholents, A.A. Method of an enhanced self-amplified spontaneous emission for X-ray free electron lasers. Phys. Rev. ST Accel. Beams 2005, 8, 040701. [Google Scholar] [CrossRef]
- Zholents, A.A.; Zolotorev, M.S. Attosecond X-ray pulses produced by ultra-short transverse slicing via laser electron beam interaction. New J. Phys. 2008, 10, 025005. [Google Scholar] [CrossRef]
- Xiang, D.; Huang, Z.; Stupakov, G. Generation of intense attosecond X-ray pulses using ultraviolet laser induced microbunching in electron beams. Phys. Rev. ST Accel. Beams 2009, 12, 060701. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, Z.; Ratner, D.; Bucksbaum, P.; Merdji, H. Generation of attosecond X-ray pulses with a multicycle two-color enhanced self-amplified spontaneous emission scheme. Phys. Rev. ST Accel. Beams 2009, 12, 060703. [Google Scholar] [CrossRef]
- Kumar, S.; Kang, H.S.; Kim, D.E. Generation of isolated attosecond hard X-ray pulse in enhanced self-amplified spontaneous emission scheme. Opt. Express 2011, 19, 7537. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kang, H.S.; Kim, D.E. Tailoring the amplification of attosecond pulse through detuned X-ray FEL undulator. Opt. Express 2015, 23, 2808. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.Y.; Yoon, M.; Kim, D.E. Generation of attosecond X-ray and gamma-ray via Compton backscattering. Opt. Express 2009, 17, 7853–7861. [Google Scholar] [CrossRef] [PubMed]
- Emma, P.; Bane, K.; Cornacchia, M.; Huang, Z. Femtosecond and subfemtosecond X-ray pulses from a self-amplified spontaneous emission-based free electron laser. Phys. Rev. Lett. 2004, 92, 074801. [Google Scholar] [CrossRef] [PubMed]
- Reiche, S.; Musumeci, P.; Pellegrini, C.; Rosenzweig, J.B. Development of ultra-short pulse, single coherent spike for SASE X-ray FELs. Nucl. Instrum. Methods Phys. Res. Sect. A 2008, 593, 45. [Google Scholar] [CrossRef]
- Tanaka, T. Proposal for a Pulse-compression scheme in X-ray free electron lasers to generate a multiterawatt, attosecond X-ray pulse. Phys. Rev. Lett. 2013, 110, 084801. [Google Scholar] [CrossRef] [PubMed]
- Prat, E.; Reiche, S. Simple method to generate terawatt-attosecond X-ray free electron laser pulses. Phys. Rev. Lett. 2015, 114, 244801. [Google Scholar] [CrossRef] [PubMed]
- Prat, E.; Lohl, F.; Reiche, S. Efficient generation of short and high power X-ray free electron laser pulses based on superradiance with a transversely tilted beam. Phys. Rev. ST Accel. Beams 2015, 18, 100701. [Google Scholar] [CrossRef]
- Kumar, S.; Parc, Y.W.; Landsman, A.S.; Kim, D.E. Temporally-coherent terawatt attosecond XFEL synchronized with a few cycle laser. Sci. Rep. 2016, 6, 37700. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, R.; Souza, L.D.S.; Pierini, P.; Piovella, N. The superradiant regime of an FEL: Analytical and numerical results. Nucl. Instrum. Methods Phys. Res. Sect. A 1990, 296, 358–367. [Google Scholar] [CrossRef]
- Bonifacio, R.; Piovella, N.; McNeil, B.W.J. Superradiant evolution of radiation pulses in a free electron laser. Phys. Rev. A 1991, 44, R3441. [Google Scholar] [CrossRef] [PubMed]
- Kroll, N.M.; Morton, P.L.; Rosenbluth, M.N. Free-electron lasers with variable parameter wigglers. IEEE J. Quant. Electron. 1981, 17, 1436–1468. [Google Scholar] [CrossRef]
- Geloni, G.; Kocharyan, V.; Saldin, E. A simple method for controlling the line width of SASE X-ray FELs. In DESY Report; No. 10-004; Cornell University Library: Ithaca, NY, USA, 2010. [Google Scholar]
- Borland, M. Elegant: A Flexible SDDS-Compliant Code for Accelerator Simulation; Report No. LS-287; Cornell University Library: Ithaca, NY, USA, 2000; pp. 1–11. [Google Scholar]
- Lee, J.H.; Han, J.H.; Lee, S.; Hong, J.; Kim, C.H.; Min, C.K.; Ko, I.S. PAL-XFEL laser heater commissioning. Nucl. Instrum. Methods Phys. Res. Sect. A 2017, 843, 39. [Google Scholar] [CrossRef]
- Reiche, S. GENESIS 1.3: A fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods Phys. Res. Sect. A 1999, 429, 243–248. [Google Scholar] [CrossRef]
- Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M. Longitudinal impedence and wake from XFEL undulators. Impact on current-enhanced SASE schemes. Nucl. Instrum. Methods Phys. Res. Sect. A 2007, 583, 228. [Google Scholar] [CrossRef]
- Gruner, F.J.; Schroeder, C.B.; Maier, A.R.; Becker, S.; Mikhailova, J.M. Space-charge effects in ultrahigh electron bunches generated by laser-plasma accelerators. Phys. Rev. ST Accel. Beams 2009, 12, 020701. [Google Scholar] [CrossRef]
- Feldhaus, J.; Saldin, E.L.; Schneider, J.R.; Schneidmiller, E.A.; Yurkov, M.V. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL. Opt. Commun. 1997, 140, 341. [Google Scholar] [CrossRef]
- Chini, M.; Mashiko, H.; Wang, H.; Chen, S. Delay control in attosecond pump-probe experiments. Opt. Express 2009, 17, 21459–21464. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Grguras, I.; Behrens, C.; Bromberger, H. Femtosecond all optical synchronization of an X-ray free electron laser. Nat. Commun. 2015, 6, 5938. [Google Scholar] [CrossRef] [PubMed]
- Cinquegrana, P.; Cleva, S.; Demidovich, A.; Gaio, G. Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser. Phys. Rev. ST Accel. Beams 2014, 17, 040702. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Landsman, A.S.; Kim, D.E. Terawatt-Isolated Attosecond X-ray Pulse Using a Tapered X-ray Free Electron Laser. Appl. Sci. 2017, 7, 614. https://doi.org/10.3390/app7060614
Kumar S, Landsman AS, Kim DE. Terawatt-Isolated Attosecond X-ray Pulse Using a Tapered X-ray Free Electron Laser. Applied Sciences. 2017; 7(6):614. https://doi.org/10.3390/app7060614
Chicago/Turabian StyleKumar, Sandeep, Alexandra S. Landsman, and Dong Eon Kim. 2017. "Terawatt-Isolated Attosecond X-ray Pulse Using a Tapered X-ray Free Electron Laser" Applied Sciences 7, no. 6: 614. https://doi.org/10.3390/app7060614
APA StyleKumar, S., Landsman, A. S., & Kim, D. E. (2017). Terawatt-Isolated Attosecond X-ray Pulse Using a Tapered X-ray Free Electron Laser. Applied Sciences, 7(6), 614. https://doi.org/10.3390/app7060614