Stochastic and Higher-Order Effects on Exploding Pulses
Abstract
:1. Introduction
2. Influence of Additive and Multiplicative Noise on Exploding Dissipative Solitons
2.1. Stochastic Equations
2.2. Numerical Method
2.3. Results
3. Exploding Dissipative Solitons and Higher-Order Effects
3.1. Complex Ginzburg-Landau Equation and Short Pulses
3.2. Results
4. Conclusions and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cundiff, S.; Soto-Crespo, J.; Akhmediev, N. Experimental Evidence for Soliton Explosions. Phys. Rev. Lett. 2002, 88, 073903. [Google Scholar] [CrossRef] [PubMed]
- Runge, A.F.; Broderick, N.G.; Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2015, 2, 36–39. [Google Scholar] [CrossRef]
- Liu, M.; Luo, A.P.; Yan, Y.R.; Hu, S.; Liu, Y.C.; Cui, H.; Luo, Z.C.; Xu, W.C. Successive soliton explosions in an ultrafast fiber laser. Opt. Lett. 2016, 41, 1181–1184. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, O.; Rosso, O.A.; Larrondo, H.A. Localized Structures in Physics and Chemistry. Eur. Phys. J. Spec. Top. 2014, 223, 1–7. [Google Scholar] [CrossRef]
- Akhmediev, N.; Ankiewicz, A. Dissipative Solitons; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Kolodner, P.; Bensimon, D.; Surko, C. Traveling-wave convection in an annulus. Phys. Rev. Lett. 1988, 60, 1723. [Google Scholar] [CrossRef] [PubMed]
- Niemela, J.J.; Ahlers, G.; Cannell, D.S. Localized traveling-wave states in binary-fluid convection. Phys. Rev. Lett. 1990, 64, 1365. [Google Scholar] [CrossRef] [PubMed]
- Kolodner, P. Collisions between pulses of traveling-wave convection. Phys. Rev. A 1991, 44, 6466–6479. [Google Scholar] [CrossRef] [PubMed]
- Rotermund, H.; Jakubith, S.; Von Oertzen, A.; Ertl, G. Solitons in a surface reaction. Phys. Rev. Lett. 1991, 66, 3083. [Google Scholar] [CrossRef] [PubMed]
- Umbanhowar, P.B.; Melo, F.; Swinney, H.L. Localized excitations in a vertically vibrated granular layer. Nature 1996, 382, 793. [Google Scholar] [CrossRef]
- Taranenko, V.; Staliunas, K.; Weiss, C. Spatial soliton laser: Localized structures in a laser with a saturable absorber in a self-imaging resonator. Phys. Rev. A 1997, 56, 1582. [Google Scholar] [CrossRef]
- Lioubashevski, O.; Hamiel, Y.; Agnon, A.; Reches, Z.; Fineberg, J. Oscillons and propagating solitary waves in a vertically vibrated colloidal suspension. Phys. Rev. Lett. 1999, 83, 3190. [Google Scholar] [CrossRef]
- Ultanir, E.A.; Stegeman, G.I.; Michaelis, D.; Lange, C.H.; Lederer, F. Stable dissipative solitons in semiconductor optical amplifiers. Phys. Rev. Lett. 2003, 90, 253903. [Google Scholar] [CrossRef] [PubMed]
- Merkt, F.S.; Deegan, R.D.; Goldman, D.I.; Rericha, E.C.; Swinney, H.L. Persistent holes in a fluid. Phys. Rev. Lett. 2004, 92, 184501. [Google Scholar] [CrossRef] [PubMed]
- Ebata, H.; Sano, M. Self-replicating holes in a vertically vibrated dense suspension. Phys. Rev. Lett. 2011, 107, 088301. [Google Scholar] [CrossRef] [PubMed]
- Soto-Crespo, J.M.; Akhmediev, N.; Ankiewicz, A. Pulsating, creeping, and erupting solitons in dissipative systems. Phys. Rev. Lett. 2000, 85, 2937–2940. [Google Scholar] [CrossRef] [PubMed]
- Akhmediev, N.; Soto-Crespo, J.; Town, G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach. Phys. Rev. E 2001, 63, 056602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, H.R.; Lomdahl, P.S.; Newell, A.C. Evolution of the order parameter in situations with broken rotational symmetry. Phys. Lett. A 1986, 118, 67–73. [Google Scholar] [CrossRef]
- Brand, H.R.; Lomdahl, P.S.; Newell, A.C. Benjamin-Feir turbulence in convective binary fluid mixtures. Physica D 1986, 23, 345–361. [Google Scholar] [CrossRef]
- Thual, O.; Fauve, S. Localized structures generated by subcritical instabilities. J. Phys. France 1988, 49, 1829–1833. [Google Scholar] [CrossRef]
- Haus, H.A. Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 1975, 46, 3049–3058. [Google Scholar] [CrossRef]
- Belanger, P. Coupled-cavity mode locking: A nonlinear model. JOSA B 1991, 8, 2077–2081. [Google Scholar] [CrossRef]
- Weiss, C. Spatio-temporal structures. Part II. Vortices and defects in lasers. Phys. Rep. 1992, 219, 311–338. [Google Scholar] [CrossRef]
- Mollenauer, L.F.; Gordon, J.P.; Evangelides, S.G. The sliding-frequency guiding filter: An improved form of soliton jitter control. Opt. Lett. 1992, 17, 1575–1577. [Google Scholar] [CrossRef] [PubMed]
- Firth, W.; Scroggie, A. Optical bullet holes: Robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett. 1996, 76, 1623. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, O.; Brand, H.R. Transition from modulated to exploding dissipative solitons: Hysteresis, dynamics, and analytic aspects. Phys. Rev. E 2010, 82, 026203. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, O.; Cartes, C.; Cisternas, J.; Brand, H.R. Exploding dissipative solitons: The analog of the Ruelle-Takens route for spatially localized solutions. Phys. Rev. E 2011, 83, 056214. [Google Scholar] [CrossRef] [PubMed]
- Cartes, C.; Descalzi, O.; Brand, H.R. Noise can induce explosions for dissipative solitons. Phys. Rev. E 2012, 85, 015205. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, O.; Cartes, C.; Brand, H.R. Noisy localized structures induced by large noise. Phys. Rev. E 2015, 91, 020901. [Google Scholar] [CrossRef] [PubMed]
- Descalzi, O.; Cartes, C.; Brand, H.R. Multiplicative noise can lead to the collapse of dissipative solitons. Phys. Rev. E 2016, 94, 012219. [Google Scholar] [CrossRef] [PubMed]
- Van Kampen, N. Stochastic Processes in Physics and Chemistry; North-Holland Personal Library; Elsevier Science: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Risken, H.; Haken, H. The Fokker-Planck Equation: Methods of Solution and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Tsimring, L.S. Noise in biology. Rep. Prog. Phys. 2014, 77, 026601. [Google Scholar] [CrossRef] [PubMed]
- Graham, R. Hydrodynamic fluctuations near the convection instability. Phys. Rev. A 1974, 10, 1762. [Google Scholar] [CrossRef]
- Schenzle, A.; Brand, H.R. Multiplicative stochastic processes in statistical physics. Phys. Rev. A 1979, 20, 1628. [Google Scholar] [CrossRef]
- Brand, H.R.; Kai, S.; Wakabayashi, S. External noise can suppress the onset of spatial turbulence. Phys. Rev. Lett. 1985, 54, 555. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G. Nonlinear Fiber Optics; Optics and Photonics Series; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Cartes, C.; Descalzi, O. Periodic exploding dissipative solitons. Phys. Rev. A 2016, 93, 031801. [Google Scholar] [CrossRef]
- Deissler, R.; Brand, H.R. The effect of nonlinear gradient terms on localized states near a weakly inverted bifurcation. Phys. Lett. A 1990, 146, 252. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Descalzi, O.; Cartes, C. Stochastic and Higher-Order Effects on Exploding Pulses. Appl. Sci. 2017, 7, 887. https://doi.org/10.3390/app7090887
Descalzi O, Cartes C. Stochastic and Higher-Order Effects on Exploding Pulses. Applied Sciences. 2017; 7(9):887. https://doi.org/10.3390/app7090887
Chicago/Turabian StyleDescalzi, Orazio, and Carlos Cartes. 2017. "Stochastic and Higher-Order Effects on Exploding Pulses" Applied Sciences 7, no. 9: 887. https://doi.org/10.3390/app7090887
APA StyleDescalzi, O., & Cartes, C. (2017). Stochastic and Higher-Order Effects on Exploding Pulses. Applied Sciences, 7(9), 887. https://doi.org/10.3390/app7090887