Habitat Potential Mapping of Marten (Martes flavigula) and Leopard Cat (Prionailurus bengalensis) in South Korea Using Artificial Neural Network Machine Learning
Abstract
:1. Introduction
2. Data
2.1. Habitat Survey
2.2. Habitat-Related Factors
3. Methods
4. Results
4.1. Weight of Related Factors and Habitat Potential Mapping
4.2. Validation
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P. Status and ecological effects of the world’s largest carnivores. Science 2014, 343, 1241484. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Buskirk, S.W. Forest microenvironments and resting energetics of the American marten Martes americana. Ecography 1994, 17, 249–256. [Google Scholar] [CrossRef]
- Harrison, D.J.; Fuller, A.K.; Proulx, G. Martens and Fishers (Martes) in Human-Altered Environments: An International Perspective; Springer Science & Business Media: Berlin, Germany, 2004. [Google Scholar]
- Grassman, L.I., Jr.; Tewes, M.E.; Silvy, N.J. Ranging, habitat use and activity patterns of binturong arctictis binturong and yellow-throated marten Martes flavigula in north-central Thailand. Wildl. Biol. 2005, 11, 49–57. [Google Scholar] [CrossRef]
- Park, C.-H.; Choi, T.-Y.; Kwon, H.-S.; Woo, D.-G. Habitat selection and management of the leopard cat (Prionailurus bengalensis) in a rural area of Korea. Korean J. Environ. Ecol. 2012, 26, 322–332. [Google Scholar]
- Ramcharan, A.; Hengl, T.; Nauman, T.; Brungard, C.; Waltman, S.; Wills, S.; Thompson, J. Soil property and class maps of the conterminous us at 100 meter spatial resolution based on a compilation of national soil point observations and machine learning. arXiv, 2017; arXiv:1705.08323. [Google Scholar]
- Veronesi, F.; Korfiati, A.; Buffat, R.; Raubal, M. Assessing accuracy and geographical transferability of machine learning algorithms for wind speed modelling. In Proceedings of the International Conference on Geographic Information Science, Wageningen, The Netherlands, 9–12 May 2017; Springer: Berlin, Germany, 2017; pp. 297–310. [Google Scholar]
- Folmer, E.O.; van Beusekom, J.E.; Dolch, T.; Gräwe, U.; Katwijk, M.M.; Kolbe, K.; Philippart, C.J. Consensus forecasting of intertidal seagrass habitat in the wadden sea. J. Appl. Ecol. 2016, 53, 1800–1813. [Google Scholar] [CrossRef]
- Sahragard, H.P.; Chahouki, M.A.Z. Comparison of logistic regression and machine learning techniques in prediction of habitat distribution of plant species. Range Manag. Agrofor. 2016, 37, 21–26. [Google Scholar]
- Fox, C.; Huettmann, F.; Harvey, G.; Morgan, K.; Robinson, J.; Williams, R.; Paquet, P. Predictions from machine learning ensembles: Marine bird distribution and density on Canada’s pacific coast. Mar. Ecol. Prog. Ser. 2017, 566, 199–216. [Google Scholar] [CrossRef]
- Wieland, R.; Kerkow, A.; Früh, L.; Kampen, H.; Walther, D. Automated feature selection for a machine learning approach toward modeling a mosquito distribution. Ecol. Model. 2017, 352, 108–112. [Google Scholar] [CrossRef]
- Anderson, D.J.; Rojas, L.F.; Watson, S.; Knelson, L.P.; Pruitt, S.; Lewis, S.S.; Moehring, R.W.; Bennett, E.E.S.; Weber, D.J.; Chen, L.F. Identification of novel risk factors for community-acquired clostridium difficile infection using spatial statistics and geographic information system analyses. PLoS ONE 2017, 12, e0176285. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.T.; Bui, Q.-T.; Nguyen, Q.-P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A hybrid artificial intelligence approach using gis-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agric. For. Meteorol. 2017, 233, 32–44. [Google Scholar]
- Rahimi, S.; Martin, M.J.; Obeysekere, E.; Hellmann, D.; Liu, X.; Andris, C. A geographic information system (gis)-based analysis of social capital data: Landscape factors that correlate with trust. Sustainability 2017, 9, 365. [Google Scholar] [CrossRef]
- Ottaviani, D.; Panzacchi, M.; Lasinio, G.J.; Genovesi, P.; Boitani, L. Modelling semi-aquatic vertebrates’ distribution at the drainage basin scale: The case of the otter lutra lutra in Italy. Ecol. Model. 2009, 220, 111–121. [Google Scholar] [CrossRef]
- Poplar-Jeffers, I.O.; Petty, J.T.; Anderson, J.T.; Kite, S.J.; Strager, M.P.; Fortney, R.H. Culvert replacement and stream habitat restoration: Implications from brook trout management in an appalachian watershed, USA. Restor. Ecol. 2009, 17, 404–413. [Google Scholar] [CrossRef]
- Patel, R.P.; Wutke, S.; Lenz, D.; Mukherjee, S.; Ramakrishnan, U.; Veron, G.; Fickel, J.; Wilting, A.; Förster, D.W. Genetic structure and phylogeography of the leopard cat (Prionailurus bengalensis) inferred from mitochondrial genomes. J. Hered. 2017, 108, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Xu, J.-T.; Zou, F.-D.; Peng, Q.-K.; Peng, R. The complete mitochondrial genome of leopard cat, Prionailurus bengalensis chinensis (carnivora: Felidae). Mitochondrial DNA A 2016, 27, 3073–3074. [Google Scholar]
- Jang, K.H.; Hwang, U.W. Complete mitochondrial genome of korean yellow-throated marten, Martes flavigula (carnivora, mustelidae). Mitochondrial DNA A 2016, 27, 1785–1786. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-T.; Liang, Y.-J.; Kuo, C.-C.; Pei, K.J.-C. Home ranges, movements and activity patterns of leopard cats (Prionailurus bengalensis) and threats to them in Taiwan. Mamm. Study 2016, 41, 77–86. [Google Scholar] [CrossRef]
- Vigne, J.-D.; Evin, A.; Cucchi, T.; Dai, L.; Yu, C.; Hu, S.; Soulages, N.; Wang, W.; Sun, Z.; Gao, J. Earliest “domestic” cats in China identified as leopard cat (Prionailurus bengalensis). PLoS ONE 2016, 11, e0147295. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.; Ross, J.; Hearn, A.J.; Cheyne, S.M.; Alfred, R.; Bernard, H.; Boonratana, R.; Samejima, H.; Heydon, M.; Augeri, D.M.; et al. Predicted distribution of the leopard cat Prionailurus bengalensis (mammalia: Carnivora: Felidae) on borneo. Raffles Bull. Zool. 2016, 33, 180–185. [Google Scholar]
- Lee, M.-J.; Song, W.; Lee, S. Habitat mapping of the leopard cat (Prionailurus bengalensis) in South Korea using gis. Sustainability 2015, 7, 4668–4688. [Google Scholar] [CrossRef]
- Bui, D.T.; Lofman, O.; Revhaug, I.; Dick, O. Landslide susceptibility analysis in the hoa binh province of vietnam using statistical index and logistic regression. Nat. Hazards 2011, 59, 1413. [Google Scholar] [CrossRef]
- Huck, M.; Davison, J.; Roper, T.J. Predicting European badger meles meles sett distribution in urban environments. Wildl. Biol. 2008, 14, 188–198. [Google Scholar] [CrossRef]
- Gavashelishvili, A.; Lukarevskiy, V. Modelling the habitat requirements of leopard panthera pardus in west and Central Asia. J. Appl. Ecol. 2008, 45, 579–588. [Google Scholar] [CrossRef]
- Northrup, J.; Stenhouse, G.; Boyce, M. Agricultural lands as ecological traps for grizzly bears. Anim. Conserv. 2012, 15, 369–377. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Perzanowski, K.; Chaskovskyy, O.; Ostapowicz, K.; Halada, L.; Bashta, A.-T.; Kruhlov, I.; Hostert, P.; Waller, D.M.; Radeloff, V.C. European bison habitat in the Carpathian mountains. Biol. Conserv. 2010, 143, 908–916. [Google Scholar] [CrossRef]
- Clement, M.J.; Castleberry, S.B. Estimating density of a forest-dwelling bat: A predictive model for rafinesque’s big-eared bat. Popul. Ecol. 2013, 55, 205–215. [Google Scholar] [CrossRef]
- Greaves, G.J.; Mathieu, R.; Seddon, P.J. Predictive modelling and ground validation of the spatial distribution of the New Zealand long-tailed bat (Chalinolobus tuberculatus). Biol. Conserv. 2006, 132, 211–221. [Google Scholar] [CrossRef]
- Maleki, S.; Soffianian, A.R.; Koupaei, S.S.; Saatchi, S.; Pourmanafi, S.; Sheikholeslam, F. Habitat mapping as a tool for water birds conservation planning in an arid zone wetland: The case study hamun wetland. Ecol. Eng. 2016, 95, 594–603. [Google Scholar] [CrossRef]
- Novaczek, E.; Devillers, R.; Edinger, E.; Mello, L. High resolution habitat mapping to describe coastal denning habitat of a Canadian species at risk, atlantic wolffish (Anarhichas lupus). Can. J. Fish. Aquat. Sci. 2017. [Google Scholar] [CrossRef]
- Park, J.-K.; Das, A.; Park, J.-H. A new approach to estimate the spatial distribution of solar radiation using topographic factor and sunshine duration in South Korea. Energy Convers. Manag. 2015, 101, 30–39. [Google Scholar] [CrossRef]
- Woo, D.G. A Study on Ecological Characteristics and Conservation of Yellow-Throated Marten (Martes flavigula) in Temperate Forests of Korea. Ph.D. Thesis, Seoul National University, Seoul, Korea, 2014. [Google Scholar]
- Rumelhart, D.E.; McClelland, J.L.; Group, P.R. Parallel Distributed Processing; MIT Press: Cambridge, MA, USA, 1987; Volume 1. [Google Scholar]
- Hines, J.; Tsoukalas, L.H.; Uhrig, R.E. Matlab Supplement to Fuzzy and Neural Approaches in Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Althuwaynee, O.F.; Pradhan, B.; Lee, S. A novel integrated model for assessing landslide susceptibility mapping using chaid and ahp pair-wise comparison. Int. J. Remote Sens. 2016, 37, 1190–1209. [Google Scholar] [CrossRef]
- Kim, J.-C.; Lee, S.; Jung, H.-S.; Lee, S. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-chang, Korea. Geocarto Int. 2017, 1–16. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.-C.; Jung, H.-S.; Lee, M.J.; Lee, S. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomat. Nat. Hazards Risk 2017, 1–19. [Google Scholar] [CrossRef]
- Tahmassebipoor, N.; Rahmati, O.; Noormohamadi, F.; Lee, S. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab. J. Geosci. 2016, 9, 79. [Google Scholar] [CrossRef]
Original Data | Factors | Data Type | Scale |
---|---|---|---|
Habitat | Marten Leopard cat | Point | - |
Topographical map a | Ground elevation (m) Slope gradient (°) Slope aspect | GRID | 1:5000 |
Forest map b | Timber type Timber age | Polygon | 1:25,000 |
Land cover map c | Land cover Distance from road (m) Distance from water (m) Distance from forest (m) | Polygon | 1:25,000 |
Code | Forest Type | Code | Forest Type | ||
---|---|---|---|---|---|
Forest species | D PD PK PL PR Q PQ PO CA | Pinus densiflora Forests Pinus densiflora artificial forest Pinus koraiensis forest Larch Pinus rigida forest Oak forest Oak artificial forest Poplar forest Chestnut artificial forest | Forest physiognomy | C | Conifer mixed forest |
H | Broadleaved forest | ||||
M | Mixed forest of soft and hardwood | ||||
Dentuded area | F | Cut-over area | |||
O | Non-stocked forest land | ||||
E | Dentuded land | ||||
LP | Grassland | ||||
L | Farmland | ||||
Left-over area | R | Left-over area | |||
W | Water |
Marten | Leopard Cat | |||||
---|---|---|---|---|---|---|
Average | Standard Deviation | Normalized Weight with Respect to Land Cover | Average | Standard Deviation | Normalized Weight with Respect to Land Cover | |
DEM | 0.1657 | 0.0175 | 2.3877 | 0.1728 | 0.0208 | 2.3883 |
Slope gradient | 0.1335 | 0.0102 | 1.9242 | 0.1939 | 0.0103 | 2.6790 |
Slope aspect | 0.0901 | 0.0019 | 1.2986 | 0.0768 | 0.0019 | 1.0619 |
Timber type | 0.1453 | 0.0107 | 2.0945 | 0.1159 | 0.0185 | 1.6014 |
Timber age | 0.0704 | 0.0104 | 1.0146 | 0.1053 | 0.0059 | 1.4545 |
Land cover | 0.0694 | 0.0015 | 1.0000 | 0.0724 | 0.0030 | 1.0000 |
Distance from road | 0.1092 | 0.0023 | 1.5741 | 0.0817 | 0.0054 | 1.1285 |
Distance from water | 0.1210 | 0.0032 | 1.7439 | 0.0854 | 0.0037 | 1.1803 |
Distance from forest | 0.0953 | 0.0008 | 1.3735 | 0.0959 | 0.0044 | 1.3259 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Lee, S.; Song, W.; Lee, M.-J. Habitat Potential Mapping of Marten (Martes flavigula) and Leopard Cat (Prionailurus bengalensis) in South Korea Using Artificial Neural Network Machine Learning. Appl. Sci. 2017, 7, 912. https://doi.org/10.3390/app7090912
Lee S, Lee S, Song W, Lee M-J. Habitat Potential Mapping of Marten (Martes flavigula) and Leopard Cat (Prionailurus bengalensis) in South Korea Using Artificial Neural Network Machine Learning. Applied Sciences. 2017; 7(9):912. https://doi.org/10.3390/app7090912
Chicago/Turabian StyleLee, Saro, Sunmin Lee, Wonkyong Song, and Moung-Jin Lee. 2017. "Habitat Potential Mapping of Marten (Martes flavigula) and Leopard Cat (Prionailurus bengalensis) in South Korea Using Artificial Neural Network Machine Learning" Applied Sciences 7, no. 9: 912. https://doi.org/10.3390/app7090912
APA StyleLee, S., Lee, S., Song, W., & Lee, M. -J. (2017). Habitat Potential Mapping of Marten (Martes flavigula) and Leopard Cat (Prionailurus bengalensis) in South Korea Using Artificial Neural Network Machine Learning. Applied Sciences, 7(9), 912. https://doi.org/10.3390/app7090912