Current Status of Single Particle Imaging with X-ray Lasers
Abstract
:1. Coherent Diffraction Imaging Using Synchrotron Light Source
2. Coherent Diffraction Imaging with X-ray Lasers
3. Single-Particle Imaging with X-ray Lasers
3.1. The Road Map
- (1)
- Radiation damage;
- (2)
- Start-to-end simulation pipeline;
- (3)
- Samples issues;
- (4)
- Sample delivery system;
- (5)
- Characterization of parasitic scattering and noise;
- (6)
- Beam diagnostics and characterization;
- (7)
- Data analysis and phase retrieval algorithms development.
3.2. Setup and the Experiment Procedure
3.3. Current Status
3.4. Light Source and Instruments
3.5. Sample Selection
3.6. Sample Delivery
3.7. Detector and Data Analysis
4. Summary and Future Prospects
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Opella, S.J. Structure Determination of Membrane Proteins by Nuclear Magnetic Resonance Spectroscopy. Annu. Rev. Anal. Chem. 2013, 6, 305–328. [Google Scholar] [CrossRef] [PubMed]
- Garman, E.F. Developments in X-ray Crystallographic Structure Determination of Biological Macromolecules. Science 2014, 343, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Elmlund, D.; Elmlund, H. Cryogenic Electron Microscopy and Single-Particle Analysis. Annu. Rev. Biochem. 2015, 84, 499–517. [Google Scholar] [CrossRef] [PubMed]
- Marsh, J.A.; Teichmann, S.A. Structure, Dynamics, Assembly, and Evolution of Protein Complexes. Annu. Rev. Biochem. 2015, 84, 551–575. [Google Scholar] [CrossRef] [PubMed]
- Rajadhyaksha, M.; Grossman, M.; Esterowitz, D.; Webb, R.H.; Rox Anderson, R. In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast. J. Investig. Dermatol. 1995, 104, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Fujikura, K.; Higashiyama, T.; Takata, K. DNA Staining for Fluorescence and Laser Confocal Microscopy. J. Histochem. Cytochem. 1997, 45, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 2010, 7, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Willig, K.I.; Rizzoli, S.O.; Westphal, V.; Jahn, R.; Hell, S.W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006, 440, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Pawley, J.B. Fundamental Limits in Confocal Microscopy. In Handbook of Biological Confocal Microscopy; Springer: Boston, MA, USA, 2006; pp. 20–42. ISBN 978-03-8-745524-2. [Google Scholar]
- Binnig, G.; Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 1983, 126, 236–244. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.B.; Carter, C.B. The Transmission Electron Microscope; Springer: Boston, MA, USA, 1996; ISBN 978-14-7-572519-3. [Google Scholar]
- Reichelt, R. Scanning Electron Microscopy; Springer: New York, NY, USA, 2007; pp. 133–272. ISBN 978-03-8-749762-4. [Google Scholar]
- Larson, B.C.; Yang, W.; Ice, G.E.; Budai, J.D.; Tischler, J.Z. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 2002, 415, 887–890. [Google Scholar] [CrossRef] [PubMed]
- Chao, W.; Harteneck, B.D.; Liddle, J.A.; Anderson, E.H.; Attwood, D.T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 2005, 435, 1210–1213. [Google Scholar] [CrossRef] [PubMed]
- Sakdinawat, A.; Attwood, D. Nanoscale X-ray imaging. Nat Photon. 2010, 4, 840–848. [Google Scholar] [CrossRef]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef] [PubMed]
- Rust, M.J.; Bates, M.; Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Klar, T.A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210. [Google Scholar] [CrossRef] [PubMed]
- Hofer, W.A.; Foster, A.S.; Shluger, A.L. Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys. 2003, 75, 1287–1331. [Google Scholar] [CrossRef]
- Kohl, L.R.H. Transmission Electron Microscopy, 5th ed.; Springer: New York, NY, USA, 2008; ISBN 978-03-8-740093-8. [Google Scholar]
- Spence, J.C.H. High-Resolution Electron Microscopy, 4th ed.; Oxford University Press: New York, NY, USA, 2017; ISBN 978-01-9-879583-4. [Google Scholar]
- Breedlove, J.R., Jr.; Trammell, G.T. Molecular Microscopy: Fundamental Limitations. Science 1970, 170, 1310–1313. [Google Scholar] [CrossRef] [PubMed]
- Howells, M.R.; Beetz, T.; Chapman, H.N.; Cui, C.; Holton, J.M.; Jacobsen, C.J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; et al. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J. Electron. Spectrosc. Relat. Phenom. 2009, 170, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Barty, A.; Caleman, C.; Aquila, A.; Timneanu, N.; Lomb, L.; White, T.A.; Andreasson, J.; Arnlund, D.; Bajt, S.; Barends, T.R.M.; et al. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photon. 2012, 6, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Attwood, D. Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications, 1st ed.; Cambridge University Press: New York, NY, USA, 2007; ISBN 978-0521029971. [Google Scholar]
- Mimura, H.; Handa, S.; Kimura, T.; Yumoto, H.; Yamakawa, D.; Yokoyama, H.; Matsuyama, S.; Inagaki, K.; Yamamura, K.; Sano, Y.; et al. Breaking the 10nm barrier in hard-X-ray focusing. Nat. Phys. 2010, 6, 122–125. [Google Scholar] [CrossRef]
- Döring, F.; Robisch, A.L.; Eberl, C.; Osterhoff, M.; Ruhlandt, A.; Liese, T.; Schlenkrich, F.; Hoffmann, S.; Bartels, M.; Salditt, T.; et al. Sub-5 nm hard X-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate. Opt. Express 2013, 21, 19311–19323. [Google Scholar] [CrossRef] [PubMed]
- Drenth, J. Principles of Protein X-ray Crystallography, 3rd ed.; Springer: New York, NY, USA, 2007; ISBN 978-0-387-33334-2. [Google Scholar]
- Sayre, D. Some implications of a theorem due to Shannon. Acta. Crystallogr. 1952, 5, 843. [Google Scholar] [CrossRef]
- Miao, J.; Sayre, D.; Chapman, H.N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 1998, 15, 1662–1669. [Google Scholar] [CrossRef]
- Miao, J.; Ishikawa, T.; Anderson, E.H.; Hodgson, K.O. Phase retrieval of diffraction patterns from noncrystalline samples using the oversampling method. Phys. Rev. B 2003, 67, 174104. [Google Scholar] [CrossRef]
- Fienup, J.R. Reconstruction of an object from modulus of Its Fourier-transform. Opt. Lett. 1978, 3, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Fienup, J.R. Phase retrieval algorithms: A comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef] [PubMed]
- Fienup, J.R. Lensless coherent imaging by phase retrieval with an illumination pattern constraint. Opt. Express 2006, 14, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Bauschke, H.H.; Combettes, P.L.; Luke, D.R. Hybrid projection–reflection method for phase retrieval. J. Opt. Soc. Am. A 2003, 20, 1025–1034. [Google Scholar] [CrossRef]
- Elser, V. Solution of the crystallographic phase problem by iterated projections. Acta Crystallogr. Sect. A Found. Crystallogr. 2003, 59, 201–209. [Google Scholar] [CrossRef]
- Marchesini, S. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 2003, 68, 140101. [Google Scholar] [CrossRef]
- Luke, D.R. Relaxed averaged alternating reflections for diffraction imaging. Inverse Probl. 2005, 21, 37–50. [Google Scholar] [CrossRef]
- Chen, C.-C.; Miao, J.; Wang, C.W.; Lee, T.K. Application of optimization technique to noncrystalline x-ray diffraction microscopy: Guided hybrid input-output method. Phys. Rev. B 2007, 76, 064113. [Google Scholar] [CrossRef]
- Marchesini, S. Invited Article: A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 2007, 78, 011301. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Charalambous, P.; Kirz, J.; Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 1999, 400, 342–344. [Google Scholar] [CrossRef]
- Robinson, I.K.; Vartanyants, I.A.; Williams, G.J.; Pfeifer, M.A.; Pitney, J.A. Reconstruction of the Shapes of Gold Nanocrystals Using Coherent X-Ray Diffraction. Phys. Rev. Lett. 2001, 87, 195505. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.J.; Pfeifer, M.A.; Vartanyants, I.A.; Robinson, I.K. Three-Dimensional Imaging of Microstructure in Au Nanocrystals. Phys. Rev. Lett. 2003, 90, 175501. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Chen, C.-C.; Song, C.; Nishino, Y.; Kohmura, Y.; Ishikawa, T.; Ramunno-Johnson, D.; Lee, T.-K.; Risbud, S.H. Three-dimensional GaN-Ga2O3 core shell structure revealed by x-ray diffraction microscopy. Phys. Rev. Lett. 2006, 97, 215503. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.A.; Williams, G.J.; Vartanyants, I.A.; Harder, R.; Robinson, I.K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 2006, 442, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Bergstrom, R.; Ramunno-Johnson, D.; Jiang, H.; Paterson, D.; de Jonge, M.D.; McNulty, I.; Lee, J.; Wang, K.L.; Miao, J. Nanoscale Imaging of Buried Structures with Elemental Specificity Using Resonant X-ray Diffraction Microscopy. Phys. Rev. Lett. 2008, 100, 025504. [Google Scholar] [CrossRef] [PubMed]
- Robinson, I.; Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 2009, 8, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ramunno-Johnson, D.; Song, C.; Amirbekian, B.; Kohmura, Y.; Nishino, Y.; Takahashi, Y.; Ishikawa, T.; Miao, J. Nanoscale imaging of mineral crystals inside biological composite materials using X-ray diffraction microscopy. Phys. Rev. Lett. 2008, 100, 038103. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Xu, R.; Chen, C.-C.; Yang, W.; Fan, J.; Tao, X.; Song, C.; Kohmura, Y.; Xiao, T.; Wang, Y.; et al. Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution. Phys. Rev. Lett. 2013, 110, 205501. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Hodgson, K.O.; Ishikawa, T.; Larabell, C.A.; LeGros, M.A.; Nishino, Y. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction. Proc. Natl. Acad. Sci. USA 2003, 100, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A.M.; et al. Biological imaging by soft x-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 15343–15346. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Jiang, H.; Mancuso, A.; Amirbekian, B.; Peng, L.; Sun, R.; Shah, S.S.; Zhou, Z.H.; Ishikawa, T.; Miao, J. Quantitative imaging of single, unstained viruses with coherent X-rays. Phys. Rev. Lett. 2008, 101, 158101. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.J.; Hanssen, E.; Peele, A.G.; Pfeifer, M.A.; Clark, J.; Abbey, B.; Cadenazzi, G.; de Jonge, M.D.; Vogt, S.; Tilley, L.; et al. High-resolution X-ray imaging of Plasmodium falciparum-infected red blood cells. Cytom. Part A 2008, 73A, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Nelson, J.; Kirz, J.; Lima, E.; Marchesini, S.; Miao, H.; Neiman, A.M.; Shapiro, D.; Steinbrener, J.; Stewart, A.; et al. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell. Phys. Rev. Lett. 2009, 103, 198101. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.; Wiegart, L.; Pernot, P.; Howells, M.; Timmins, J.; Zontone, F.; Madsen, A. Cryogenic X-Ray Diffraction Microscopy for Biological Samples. Phys. Rev. Lett. 2009, 103, 198102. [Google Scholar] [CrossRef] [PubMed]
- Nishino, Y.; Takahashi, Y.; Imamoto, N.; Ishikawa, T.; Maeshima, K. Three-dimensional visualization of a human chromosome using coherent X-ray diffraction. Phys. Rev. Lett. 2009, 102, 018101. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.; Huang, X.; Steinbrener, J.; Shapiro, D.; Kirz, J.; Marchesini, S.; Neiman, A.M.; Turner, J.J.; Jacobsen, C. High-resolution x-ray diffraction microscopy of specifically labeled yeast cells. Proc. Natl. Acad. Sci. USA 2010, 107, 7235–7239. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.; Diaz, A.; Guizar-Sicairos, M.; Gorelick, S.; Pernot, P.; Schleier, T.; Menzel, A. Cryo-scanning X-ray diffraction microscopy of frozen-hydrated yeast. J. Microsc. 2013, 249, 1–7. [Google Scholar] [CrossRef]
- Nam, D.; Park, J.; Gallagher-Jones, M.; Kim, S.; Kim, S.; Kohmura, Y.; Naitow, H.; Kunishima, N.; Yoshida, T.; Ishikawa, T.; et al. Imaging fully hydrated whole cells by coherent X-ray diffraction microscopy. Phys. Rev. Lett. 2013, 110, 098103. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Takagi, M.; Park, J.; Xu, R.; Gallagher-Jones, M.; Imamoto, N.; Ishikawa, T. Analytic 3D Imaging of Mammalian Nucleus at Nanoscale Using Coherent X-rays and Optical Fluorescence Microscopy. Biophys. J. 2014, 107, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Sun, Z.; Zhang, J.; Huang, Q.; Yao, S.; Zong, Y.; Kohmura, Y.; Ishikawa, T.; Liu, H.; Jiang, H. Quantitative Imaging of Single Unstained Magnetotactic Bacteria by Coherent X-ray Diffraction Microscopy. Anal. Chem. 2015, 87, 5849–5853. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.A.; Xu, R.; Chen, C.-C.; Huang, Z.; Jiang, H.; Chen, A.L.; Raines, K.S.; Pryor, A., Jr.; Nam, D.; Wiegart, L.; et al. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells. IUCrJ 2015, 2, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.J.; Quiney, H.M.; Dhal, B.B.; Tran, C.Q.; Nugent, K.A.; Peele, A.G.; Paterson, D.; Jonge, M.D.D. Fresnel coherent diffractive imaging. Phys. Rev. Lett. 2006, 97, 025506. [Google Scholar] [CrossRef] [PubMed]
- Abbey, B.; Nugent, K.A.; Williams, G.J.; Clark, J.N.; Peele, A.G.; Pfeifer, M.A.; de Jonge, M.; McNulty, I. Keyhole coherent diffractive imaging. Nat. Phys. 2008, 4, 394–398. [Google Scholar] [CrossRef]
- Marathe, S.; Kim, S.S.; Kim, S.N.; Kim, C.; Kang, H.C.; Nickles, P.V.; Noh, D.Y. Coherent diffraction surface imaging in reflection geometry. Opt. Express 2010, 18, 7253–7262. [Google Scholar] [CrossRef] [PubMed]
- Rodenburg, J.M.; Hurst, A.C.; Cullis, A.G.; Dobson, B.R.; Pfeiffer, F.; Bunk, O.; David, C.; Jefimovs, K.; Johnson, I. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 2007, 98, 034801. [Google Scholar] [CrossRef] [PubMed]
- Dierolf, M.; Menzel, A.; Thibault, P.; Schneider, P.; Kewish, C.M.; Wepf, R.; Bunk, O.; Pfeiffer, F. Ptychographic X-ray computed tomography at the nanoscale. Nature 2010, 467, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Hodgson, K.O.; Sayre, D. An approach to three-dimensional structures of biomolecules by using single-molecule diffraction images. Proc. Natl. Acad. Sci. USA 2001, 98, 6641–6645. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Ishikawa, T.; Johnson, B.; Anderson, E.H.; Lai, B.; Hodgson, K.O. High Resolution 3D X-ray Diffraction Microscopy. Phys. Rev. Lett. 2002, 89, 088303. [Google Scholar] [CrossRef] [PubMed]
- Nugent, K.A.; Peele, A.G.; Chapman, H.N.; Mancuso, A.P. Unique phase recovery for nonperiodic objects. Phys. Rev. Lett. 2003, 91, 203902. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.N.; Barty, A.; Marchesini, S.; Noy, A.; Hau-Riege, S.P.; Cui, C.; Howells, M.R.; Rosen, R.; He, H.; Spence, J.C.H.; et al. High-resolution ab initio three-dimensional x-ray diffraction microscopy. J. Opt. Soc. Am. A 2006, 23, 1179–1200. [Google Scholar] [CrossRef]
- Quiney, H.M.; Peele, A.G.; Cai, Z.; Paterson, D.; Nugent, K.A. Diffractive imaging of highly focused X-ray fields. Nat. Phys. 2006, 2, 101–104. [Google Scholar] [CrossRef]
- Thibault, P.; Dierolf, M.; Menzel, A.; Bunk, O.; David, C.; Pfeiffer, F. High-Resolution Scanning X-ray Diffraction Microscopy. Science 2008, 321, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.N.; Nugent, K.A. Coherent lensless X-ray imaging. Nat. Photon. 2010, 4, 833–839. [Google Scholar] [CrossRef]
- Giewekemeyera, K.; Thibaultb, P.; Kalbfleischa, S.; Beerlinka, A.; Kewishc, C.M.; Dierolfb, M.; Pfeifferb, F.; Salditta, T. Quantitative biological imaging by ptychographic X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 2010, 107, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Song, C.; Chen, C.-C.; Xu, R.; Raines, K.S.; Fahimian, B.P.; Lu, C.-H.; Lee, T.-K.; Nakashima, A.; Urano, J.; et al. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 2010, 107, 11234–11239. [Google Scholar] [CrossRef] [PubMed]
- Raines, K.S.; Salha, S.; Sandberg, R.L.; Jiang, H.; Rodriguez, J.A.; Fahimian, B.P.; Kapteyn, H.C.; Du, J.; Miao, J. Three-dimensional structure determination from a single view. Nature 2010, 463, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Abbey, B.; Whitehead, L.W.; Quiney, H.M.; Vine, D.J.; Cadenazzi, G.A.; Henderson, C.A.; Nugent, K.A.; Balaur, E.; Putkunz, C.T.; Peele, A.G.; et al. Lensless imaging using broadband X-ray sources. Nat. Photon. 2011, 5, 420–424. [Google Scholar] [CrossRef]
- Roy, S.; Parks, D.; Seu, K.A.; Su, R.; Turner, J.J.; Chao, W.; Anderson, E.H.; Cabrini, S.; Kevan, S.D. Lensless X-ray imaging in reflection geometry. Nat. Photon. 2011, 5, 243–245. [Google Scholar] [CrossRef]
- Tripathi, A.; Mohanty, J.; Dietze, S.H.; Shpyrko, O.G.; Shipton, E.; Fullerton, E.E.; Kim, S.S.; McNulty, I. Dichroic coherent diffractive imaging. Proc. Natl. Acad. Sci. USA 2011, 108, 13393–13398. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.N.; Huang, X.; Harder, R.; Robinson, I.K. High-resolution three-dimensional partially coherent diffraction imaging. Nat. Commun. 2012, 3, 993. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Sandberg, R.L.; Song, C. Coherent X-ray Diffraction Imaging. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 399–410. [Google Scholar] [CrossRef]
- Sun, T.; Jiang, Z.; Strzalka, J.; Ocola, L.; Wang, J. Three-dimensional coherent X-ray surface scattering imaging near total external reflection. Nat. Photon. 2012, 6, 586–590. [Google Scholar] [CrossRef]
- Szameit, A.; Shechtman, Y.; Osherovich, E.; Bullkich, E.; Sidorenko, P.; Dana, H.; Steiner, S.; Kley, E.B.; Gazit, S.; Cohen-Hyams, T.; et al. Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater. 2012, 11, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Seaberg, M.D.; Zhang, B.; Gardner, D.F.; Shanblatt, E.R.; Murnane, M.M.; Kapteyn, H.C.; Adams, D.E. Tabletop nanometer extreme ultraviolet imaging in an extended reflection mode using coherent Fresnel ptychography. Optica 2014, 1, 39–44. [Google Scholar] [CrossRef]
- Miao, J.; Ishikawa, T.; Robinson, I.K.; Murnane, M.M. Beyond crystallography: Diffractive imaging using coherent X-ray light sources. Science 2015, 348, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Yusuf, M.; Hashimoto, T.; Estandarte, A.K.; Thompson, G.; Robinson, I. Three-dimensional positioning and structure of chromosomes in a human prophase nucleus. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [PubMed]
- HTML5 Word Cloud. Available online: https://github.com/timdream/wordcloud (accessed on 15 October 2017).
- Eriksson, M.; van der Veen, J.F.; Quitmann, C. Diffraction-limited storage rings—A window to the science of tomorrow. J. Synchrotron Radiat. 2014, 21, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, A.P.; Toney, M.F. Spectromicroscopy and coherent diffraction imaging: Focus on energy materials applications. J. Synchrotron Radiat. 2014, 21, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Thibault, P.; Guizar-Sicairos, M.; Menzel, A. Coherent imaging at the diffraction limit. J. Synchrotron Radiat. 2014, 21, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Hettel, R. DLSR design and plans: An international overview. J. Synchrotron Radiat. 2014, 21, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Susini, J.; Barrett, R.; Chavanne, J.; Fajardo, P.; Gotz, A.; Revol, J.-L.; Zhang, L. New challenges in beamline instrumentation for the ESRF Upgrade Programme Phase II. J. Synchrotron Radiat. 2014, 21, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Ishikawa, T. SPring-8 upgrade project. In Proceedings of the IPAC2016, Busan, Korea, 8–13 May 2016. [Google Scholar]
- Tavares, P.F.; Leemann, S.C.; Sjostrom, M.; Andersson, A. The MAX IV storage ring project. J. Synchrotron Radiat. 2014, 21, 862–877. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Milas, N.; Mukai, A.H.C.; Resende, X.R.; de Sa, F.H. The Sirius project. J. Synchrotron Radiat. 2014, 21, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Madey, J.M.J. Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field. J. Appl. Phys. 1971, 42, 1906–1913. [Google Scholar] [CrossRef]
- McNeil, B.W.J.; Thompson, N.R. X-ray free-electron lasers. Nat. Photon. 2010, 4, 814–821. [Google Scholar] [CrossRef]
- Neutze, R.; Wouts, R.; Spoel, D.; Weckert, E.; Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 2000, 406, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.N.; Barty, A.; Bogan, M.J.; Boutet, S.; Frank, M.; Hau-Riege, S.P.; Marchesini, S.; Woods, B.W.; Bajt, S.; Benner, W.H.; et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2006, 2, 839–843. [Google Scholar] [CrossRef]
- Chapman, H.N. Femtosecond X-ray protein nanocrystallography. Nature 2011, 470, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Aquila, A. The linac coherent light source single particle imaging road map. Struct. Dyn. 2015, 2, 041701. [Google Scholar] [CrossRef] [PubMed]
- Tiedtke, K.; Azima, A.; Bargen, N.V.; Bittner, L.; Bonfigt, S.; Düsterer, S.; Faatz, B.; Frühling, U.; Gensch, M.; Gerth, C.; et al. The soft X-ray free-electron laser FLASH at DESY: Beamlines, diagnostics and end-stations. New J. Phys. 2009, 11, 023029. [Google Scholar] [CrossRef]
- Free-Electron Laser FLASH. Available online: https://flash.desy.de (accessed on 15 October 2017).
- Emma, P.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.J.; et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon. 2010, 4, 641–647. [Google Scholar] [CrossRef]
- Linac Coherent Light Source. Available online: https://lcls.slac.stanford.edu (accessed on 15 December 2017).
- Ishikawa, T.; Aoyagi, H.; Asaka, T.; Asano, Y.; Azumi, N.; Bizen, T.; Ego, H.; Fukami, K.; Fukui, T.; Furukawa, Y.; et al. A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photon. 2012, 6, 540–544. [Google Scholar] [CrossRef]
- SACLA XFEL. Available online: http://xfel.riken.jp/eng/ (accessed on 15 October 2017).
- Allaria, E.; Appio, R.; Badano, L.; Barletta, W.A.; Bassanese, S.; Biedron, S.G.; Borga, A.; Busetto, E.; Castronovo, D.; Cinquegrana, P.; et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 2012, 6, 699–704. [Google Scholar] [CrossRef]
- Elettra and FERMI Lightsources. Available online: https://www.elettra.trieste.it/lightsources/fermi.html (accessed on 15 October 2017).
- European XFEL. Available online: https://www.xfel.eu (accessed on 15 October 2017).
- Pohang Accelerator Laboratory. Available online: http://pal.postech.ac.kr/paleng/ (accessed on 15 October 2017).
- SwissFEL. Available online: https://www.psi.ch/swissfel/ (accessed on 15 October 2017).
- Wang, D. Soft X-ray Free-electron Laser at SINAP. In Proceedings of the IPAC2016, Busan, Korea, 8–13 May 2016. [Google Scholar]
- Zhao, Z.; Wang, D.; Gu, Q.; Yin, L.; Gu, M.; Leng, Y.; Liu, B. Status of the SXFEL Facility. Appl. Sci. 2017, 7, 607. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhao, Z.; Wang, D.; Liu, Z.; Li, R.; Yin, L.; Yang, Z.H. SCLF: An 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai. In Proceedings of the FEL2017, Santa Fe, NM, USA, 20–25 August 2017. [Google Scholar]
- Gaffney, K.J.; Chapman, H.N. Imaging atomic structure and dynamics with ultrafast X-ray scattering. Science 2007, 316, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Vartanyants, I.A.; Robinson, I.K.; McNulty, I.; David, C.; Wochner, P.; Tschentscher, T. Coherent X-ray scattering and lensless imaging at the European XFEL Facility. J. Synchrotron Radiat. 2007, 14, 453–470. [Google Scholar] [CrossRef] [PubMed]
- Barty, A.; Boutet, S.; Bogan, M.J.; Hau-Riege, S.; Marchesini, S.; Sokolowski-Tinten, K.; Stojanovic, N.; Tobey, R.A.; Ehrke, H.; Cavalleri, A.; et al. Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat. Photon. 2008, 2, 415–419. [Google Scholar] [CrossRef]
- Bogan, M.J.; Benner, W.H.; Boutet, S.; Rohner, U.; Frank, M.; Barty, A.; Seibert, M.M.; Maia, F.; Marchesini, S.; Bajt, S.; et al. Single particle X-ray diffractive imaging. Nano Lett. 2008, 8, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, A.P.; Schropp, A.; Reime, B.; Stadler, L.-M.; Singer, A.; Gulden, J.; Streit-Nierobisch, S.; Gutt, C.; Bel, G.G.; Feldhaus, J.; et al. Coherent-pulse 2D crystallography using a free-electron laser X-ray source. Phys. Rev. Lett. 2009, 102, 035502. [Google Scholar] [CrossRef] [PubMed]
- Bogan, M.J.; Boutet, S.; Chapman, H.N.; Marchesini, S.; Barty, A.; Benner, W.H.; Rohner, U.; Frank, M.; Hau-Riege, S.P.; Bajt, S.; et al. Aerosol Imaging with a Soft X-Ray Free Electron Laser. Aerosol Sci. Technol. 2010, 44, i–vi. [Google Scholar] [CrossRef]
- Hau-Riege, S.P.; Boutet, S.; Barty, A.; Bajt, S.; Bogan, M.J.; Frank, M.; Andreasson, J.; Iwan, B.; Seibert, M.M.; Hajdu, J.; et al. Sacrificial Tamper Slows Down Sample Explosion in FLASH Diffraction Experiments. Phys. Rev. Lett. 2010, 104, 064801. [Google Scholar] [CrossRef] [PubMed]
- Kassemeyer, S.; Steinbrener, J.; Lomb, L.; Hartmann, E.; Aquila, A.; Barty, A.; Martin, A.V.; Hampton, C.Y.; Bajt, S.; Barthelmess, M.; et al. Femtosecond free-electron laser x-ray diffraction data sets for algorithm development. Opt. Express 2012, 20, 4149–4158. [Google Scholar] [CrossRef] [PubMed]
- Loh, N.D.; Hampton, C.Y.; Martin, A.V.; Starodub, D.; Sierra, R.G.; Barty, A.; Aquila, A.; Schulz, J.; Lomb, L.; Steinbrener, J.; et al. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 2012, 486, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Starodub, D.; Aquila, A.; Bajt, S.; Barthelmess, M.; Barty, A.; Bostedt, C.; Bozek, J.D.; Coppola, N.; Doak, R.B.; Epp, S.W.; et al. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. Nat. Commun. 2012, 3, 1276. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.N.; Beitra, L.; Xiong, G.; Higginbotham, A.; Fritz, D.M.; Lemke, H.T.; Zhu, D.; Chollet, M.; Williams, G.J.; Messerschmidt, M.; et al. Ultrafast Three-Dimensional Imaging of Lattice Dynamics in Individual Gold Nanocrystals. Science 2013, 341, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Suzuki, A.; Zettsu, N.; Oroguchi, T.; Takayama, Y.; Sekiguchi, Y.; Kobayashi, A.; Yamamoto, M.; Nakasako, M. Coherent Diffraction Imaging Analysis of Shape-Controlled Nanoparticles with Focused Hard X-ray Free-Electron Laser Pulses. Nano Lett. 2013, 13, 6028–6032. [Google Scholar] [CrossRef] [PubMed]
- Andreasson, J.; Martin, A.V.; Liang, M.; Timneanu, N.; Aquila, A.; Wang, F.; Iwan, B.; Svenda, M.; Ekeberg, T.; Hantke, M.; et al. Automated identification and classification of single particle serial femtosecond X-ray diffraction data. Opt. Express 2014, 22, 2497–2510. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Jiang, H.; Song, C.; Rodriguez, J.A.; Huang, Z.; Chen, C.-C.; Nam, D.; Park, J.; Gallagher-Jones, M.; Kim, S.; et al. Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses. Nat. Commun. 2014, 5, 4061. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.N.; Beitra, L.; Xiong, G.; Fritz, D.M.; Lemke, H.T.; Zhu, D.; Chollet, M.; Williams, G.J.; Messerschmidt, M.M.; Abbey, B.; et al. Imaging transient melting of a nanocrystal using an X-ray laser. Proc. Natl. Acad. Sci. USA 2015, 112, 7444–7448. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, A.P.; Gorniak, T.; Staier, F.; Yefanov, O.M.; Barth, R.; Christophis, C.; Reime, B.; Gulden, J.; Singer, A.; Pettit, M.E.; et al. Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH. New J. Phys. 2010, 12, 035003. [Google Scholar] [CrossRef]
- Seibert, M.M.; Boutet, S.; Svenda, M.; Ekeberg, T.; Maia, F.R.N.C.; Bogan, M.J.; Tîmneanu, N.; Barty, A.; Hau-Riege, S.; Caleman, C.; et al. Femtosecond diffractive imaging of biological cells. J. Phys. B At. Mol. Opt. Phys. 2010, 43, 194015. [Google Scholar] [CrossRef]
- Seibert, M.M.; Ekeberg, T.; Maia, F.R.N.C.; Svenda, M.; Andreasson, J.; Jonsson, O.; Odic, D.; Iwan, B.; Rocker, A.; Westphal, D.; et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 2011, 470, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Gallagher-Jones, M.; Bessho, Y.; Kim, S.; Park, J.; Kim, S.; Nam, D.; Kim, C.; Kim, Y.; Noh, D.Y.; Miyashita, O.; et al. Macromolecular structures probed by combining single-shot free-electron laser diffraction with synchrotron coherent X-ray imaging. Nat. Commun. 2014, 5, 3798. [Google Scholar] [CrossRef] [PubMed]
- Hantke, M.F.; Hasse, D.; Maia, F.R.N.C.; Ekeberg, T.; John, K.; Svenda, M.; Loh, N.D.; Martin, A.V.; Timneanu, N.; Larsson, D.S.D.; et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nat. Photon. 2014, 8, 943–949. [Google Scholar] [CrossRef]
- Kimura, T.; Joti, Y.; Shibuya, A.; Song, C.; Kim, S.; Tono, K.; Yabashi, M.; Tamakoshi, M.; Moriya, T.; Oshima, T.; et al. Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat. Commun. 2014, 5, 3052. [Google Scholar] [CrossRef] [PubMed]
- Ekeberg, T.; Svenda, M.; Abergel, C.; Maia, F.R.N.C.; Seltzer, V.; Claverie, J.-M.; Hantke, M.; Jönsson, O.; Nettelblad, C.; Van Der Schot, G. Three-dimensional reconstruction of the giant mimivirus particle with an x-ray free-electron laser. Phys. Rev. Lett. 2015, 114, 098102. [Google Scholar] [CrossRef] [PubMed]
- Takayama, Y.; Inui, Y.; Sekiguchi, Y.; Kobayashi, A.; Oroguchi, T.; Yamamoto, M.; Matsunaga, S.; Nakasako, M. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser. Plant Cell Physiol. 2015, 56, 1272–1286. [Google Scholar] [CrossRef] [PubMed]
- Schot, G.V.D.; Svenda, M.; Maia, F.R.N.C.; Hantke, M.; DePonte, D.P.; Seibert, M.M.; Aquila, A.; Schulz, J.; Kirian, R.; Liang, M.; et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat. Commun. 2015, 6, 5704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Sun, Z.; Wang, Y.; Park, J.; Kim, S.; Gallagher-Jones, M.; Kim, Y.; Song, C.; Yao, S.; Zhang, J.; et al. Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser. Sci. Rep. 2016, 6, 34008. [Google Scholar] [CrossRef] [PubMed]
- Bostedt, C.; Thomas, H.; Hoener, M.; Eremina, E.; Fennel, T.; Meiwes-Broer, K.H.; Wabnitz, H.; Kuhlmann, M.; Plönjes, E.; Tiedtke, K.; et al. Multistep Ionization of Argon Clusters in Intense Femtosecond Extreme Ultraviolet Pulses. Phys. Rev. Lett. 2008, 100, 133401. [Google Scholar] [CrossRef] [PubMed]
- Sébastien, B.; Garth, J.W. The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). New J. Phys. 2010, 12, 035024. [Google Scholar] [CrossRef]
- Ferguson, K.R.; Bucher, M.; Bozek, J.D.; Carron, S.; Castagna, J.-C.; Coffee, R.; Curiel, G.I.; Holmes, M.; Krzywinski, J.; Messerschmidt, M.; et al. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 2015, 22, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Williams, G.J.; Messerschmidt, M.; Seibert, M.M.; Montanez, P.A.; Hayes, M.; Milathianaki, D.; Aquila, A.; Hunter, M.S.; Koglin, J.E.; et al. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 2015, 22, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Coherent X-ray Imaging (CXI). Available online: https://lcls.slac.stanford.edu/instruments/cxi (accessed on 15 December 2017).
- Atomic, Molecular & Optical Science (AMO). Available online: https://lcls.slac.stanford.edu/instruments/amo (accessed on 15 December 2017).
- Starodub, D.; Rez, P.; Hembree, G.; Howells, M.; Shapiro, D.; Chapman, H.N.; Fromme, P.; Schmidt, K.; Weierstall, U.; Doak, R.B.; et al. Dose, exposure time and resolution in serial X-ray crystallography. J. Synchrotron Radiat. 2008, 15, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Spence, J.C.H. X-ray Lasers in Biology: Structure and Dynamics. Adv. Imag. Electron Phys. 2017, 200, 103–152. [Google Scholar] [CrossRef]
- Pivovaroffa, M.J.; Biontaa, R.M.; Mccarvillea, T.J.; Souflia, R.; Stefanb, P.M. Soft X-ray Mirrors for the Linac Coherent Light Source. Proc. SPIE 2007, 6705, 670500. [Google Scholar] [CrossRef]
- Soufli, R.; Pivovaroff, M.J.; Baker, S.L.; Robinson, J.C.; Gullikson, E.M.; McCarville, T.J.; Stefan, P.M.; Aquila, A.L.; Ayers, J.; McKernan, M.A.; et al. Development, characterization and experimental performance of X-ray optics for the LCLS free-electron laser. Proc. SPIE 2008, 7077, 707716. [Google Scholar] [CrossRef]
- Ratner, D.; Brachmann, A.; Decker, F.J.; Ding, Y.; Dowell, D.; Emma, P.; Fisher, A.; Frisch, J.; Gilevich, S.; Huang, Z.; et al. Second and third harmonic measurements at the linac coherent light source. Phys. Rev. ST Accel. Beams 2011, 14, 060701. [Google Scholar] [CrossRef]
- Barty, A.; Soufli, R.; McCarville, T.; Baker, S.L.; Pivovaroff, M.J.; Stefan, P.; Bionta, R. Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser. Opt. Express 2009, 17, 15508–15519. [Google Scholar] [CrossRef] [PubMed]
- Hau-Riege, S.P.; Pardini, T. The effect of electron transport on the characterization of X-ray free-electron laser pulses via ablation. Appl. Phys. Lett. 2017, 111, 144102. [Google Scholar] [CrossRef]
- David, C.; Gorelick, S.; Rutishauser, S.; Krzywinski, J.; Vila-Comamala, J.; Guzenko, V.A.; Bunk, O.; Färm, E.; Ritala, M.; Cammarata, M.; et al. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates. Sci. Rep. 2011, 1. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Feldkamp, J.M.; Fritz, D.M.; Cammarata, M.; Robert, A.; Caronna, C.; Lemke, H.T.; Zhu, D.; Lee, S.; Boutet, S.; et al. A single-shot intensity-position monitor for hard X-ray FEL sources. Proc. SPIE 2011, 8140, 81400Q. [Google Scholar] [CrossRef]
- Hau-Riege, S.P.; London, R.A.; Szoke, A. Dynamics of biological molecules irradiated by short x-ray pulses. Phys. Rev. B 2004, 69, 051906. [Google Scholar] [CrossRef] [PubMed]
- Ziaja, B.; van der Spoel, D.; Szöke, A.; Hajdu, J. Auger-electron cascades in diamond and amorphous carbon. Phys. Rev. B 2001, 64, 214104. [Google Scholar] [CrossRef]
- Ziaja, B.; de Castro, A.R.B.; Weckert, E.; Möller, T. Modelling dynamics of samples exposed to free-electron-laser radiation with Boltzmann equations. Eur. Phys. J. D 2006, 40, 465–480. [Google Scholar] [CrossRef]
- Caleman, C.; Ortiz, C.; Marklund, E.; Bultmark, F.; Gabrysch, M.; Parak, F.G.; Hajdu, J.; Klintenberg, M.; Tîmneanu, N. Radiation damage in biological material: Electronic properties and electron impact ionization in urea. EPL 2009, 88, 29901. [Google Scholar] [CrossRef]
- Young, L.; Kanter, E.P.; Krässig, B.; Li, Y.; March, A.M.; Pratt, S.T.; Santra, R.; Southworth, S.H.; Rohringer, N.; DiMauro, L.F.; et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 2010, 466, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Garman, E.F.; Weik, M. Radiation damage to biological macromolecules: Some answers and more questions. J. Synchrotron Radiat. 2013, 20, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Yang, M.; Qu, F.; Shen, G.; Yu, R. Seed-mediated growth of platinum nanoparticles on carbon nanotubes for the fabrication of electrochemical biosensors. Electrochim. Acta 2008, 53, 3559–3565. [Google Scholar] [CrossRef]
- Zhong, B.; Kikuchi, A.; Moriyasu, Y.; Higashi, T.; Hagiwara, K.; Omura, T. A minor outer capsid protein, P9, of Rice dwarf virus. Arch. Virol. 2003, 148, 2275–2280. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, A.; Miyazaki, N.; Taka, J.; Naitow, H.; Ogawa, A.; Fujimoto, Z.; Mizuno, H.; Higashi, T.; Watanabe, Y.; Omura, T.; et al. The Atomic Structure of Rice dwarf Virus Reveals the Self-Assembly Mechanism of Component Proteins. Structure 2003, 11, 1227–1238. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, J.N.; Lecatsas, G.; Coetzee, W.F.; Hedges, R.W. Properties of R plasmid R772 and the corresponding pilus-specific phage PR772. J. Gen. Microbiol. 1979, 110, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Toropova, K.; Basnak, G.; Twarock, R.; Stockley, P.G.; Ranson, N.A. The Three-dimensional Structure of Genomic RNA in Bacteriophage MS2: Implications for Assembly. J. Mol. Biol. 2008, 375, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Martı́n, C.S.; Burnett, R.M.; de Haas, F.; Heinkel, R.; Rutten, T.; Fuller, S.D.; Butcher, S.J.; Bamford, D.H. Combined EM/X-Ray Imaging Yields a Quasi-Atomic Model of the Adenovirus-Related Bacteriophage PRD1 and Shows Key Capsid and Membrane Interactions. Structure 2001, 9, 917–930. [Google Scholar] [CrossRef]
- Worm, S.H.E.V.D.; Stonehouse, N.J.; Valegård, K.; Murray, J.B.; Walton, C.; Fridborg, K.; Stockley, P.G.; Liljas, L. Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments. Nucleic Acids Res. 1998, 26, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.S.; Bradley, A.R.; Valasatava, Y.; Duarte, J.M.; Prlić, A.; Rose, P.W. Web-based molecular graphics for large complexes. In Proceedings of the 21st International Conference on Web3D Technology, Anaheim, CA, USA, 22–24 July 2016; pp. 185–186. [Google Scholar]
- Rose, A.S.; Hildebrand, P.W. NGL Viewer: A web application for molecular visualization. Nucleic Acids Res. 2015, 43, W576–W579. [Google Scholar] [CrossRef] [PubMed]
- DePonte, D.P. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D Appl. Phys. 2008, 41, 195505. [Google Scholar] [CrossRef]
- Sierra, R.G. Nanoflow electrospinning serial femtosecond crystallography. Acta Cryst. D 2012, 68, 1584–1587. [Google Scholar] [CrossRef] [PubMed]
- Kirian, R.A.; Awel, S.; Eckerskorn, N.; Fleckenstein, H.; Wiedorn, M.; Adriano, L.; Bajt, S.; Barthelmess, M.; Bean, R.; Beyerlein, K.R.; et al. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers. Struct. Dyn. 2015, 2, 041717. [Google Scholar] [CrossRef] [PubMed]
- The Nobel Prize in Chemistry 2017. Available online: https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2017/ (accessed on 15 October 2017).
- Fernandez-Leiro, R.; Scheres, S.H.W. Unravelling biological macromolecules with cryo-electron microscopy. Nature 2016, 537, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y. Single-particle cryo-EM at crystallographic resolution. Cell 2015, 161, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Wiedorn, M.O.; Awel, S.; Morgan, A.J.; Barthelmess, M.; Bean, R.; Beyerlein, K.R.; Chavas, L.M.G.; Eckerskorn, N.; Fleckenstein, H.; Heymann, M.; et al. Post-sample aperture for low background diffraction experiments at X-ray free-electron lasers. J. Synchrotron Radiat. 2017, 24, 1296–1298. [Google Scholar] [CrossRef] [PubMed]
- Munke, A.; Andreasson, J.; Aquila, A.; Awel, S.; Ayyer, K.; Barty, A.; Bean, R.J.; Berntsen, P.; Bielecki, J.; Boutet, S.; et al. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source. Sci. Data 2016, 3, 160064. [Google Scholar] [CrossRef] [PubMed]
- Strüder, L.; Epp, S.; Rolles, D.; Hartmann, R.; Holl, P.; Lutz, G.; Soltau, H.; Eckart, R.; Reich, C.; Heinzinger, K.; et al. Large-format, high-speed, X-ray pnCCDs combined with electron and ion imaging spectrometers in a multipurpose chamber for experiments at 4th generation light sources. Nucl. Instrum. Methods Phys. Res. A 2010, 614, 483–496. [Google Scholar] [CrossRef]
- Blaj, G.; Caragiulo, P.; Carini, G.; Carron, S.; Dragone, A.; Freytag, D.; Haller, G.; Hart, P.; Hasi, J.; Herbst, R.; et al. X-ray detectors at the Linac Coherent Light Source. J. Synchrotron Radiat. 2015, 22, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Blaj, G.; Caragiulo, P.; Carini, G.; Dragone, A.; Haller, G.; Hart, P.; Hasi, J.; Herbst, R.; Kenney, C.; Markovic, B.; et al. Future of ePix detectors for high repetition rate FELs. AIP Conf. Proc. 2016, 1741, 040012. [Google Scholar] [CrossRef]
- Blaj, G.; Caragiulo, P.; Carini, G.; Carron, S.; Dragone, A.; Freytag, D.; Haller, G.; Hart, P.; Herbst, R.; Herrmann, S.; et al. Detector Development for the Linac Coherent Light Source. Synchrotron Radiat. News 2014, 27, 14–19. [Google Scholar] [CrossRef]
- Greiffenberg, D. The AGIPD detector for the European XFEL. J. Instrum. 2012, 7, C01103. [Google Scholar] [CrossRef]
- Allahgholi, A.; Becker, J.; Bianco, L.; Delfs, A.; Dinapoli, R.; Goettlicher, P.; Graafsma, H.; Greiffenberg, D.; Hirsemann, H.; Jack, S.; et al. AGIPD, a high dynamic range fast detector for the European XFEL. J. Instrum. 2015, 10, C01023. [Google Scholar] [CrossRef]
- Kameshima, T.; Ono, S.; Kudo, T.; Ozaki, K.; Kirihara, Y.; Kobayashi, K.; Inubushi, Y.; Yabashi, M.; Horigome, T.; Holland, A.; et al. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments. Rev. Sci. Instrum. 2014, 85, 033110. [Google Scholar] [CrossRef] [PubMed]
- Jungmann-Smith, J.H.; Bergamaschi, A.; Bruckner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Huthwelker, T.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; et al. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science. J. Synchrotron Radiat. 2016, 23, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.H.; Yurkov, M.V.; Schneidmiller, E.A.; Samoylova, L.; Buzmakov, A.; Jurek, Z.; Ziaja, B.; Santra, R.; Loh, N.D.; Tschentscher, T.; et al. A comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser. Sci. Rep. 2016, 6, 24791. [Google Scholar] [CrossRef] [PubMed]
- Fortmann-Grote, C.; Buzmakov, A.; Jurek, Z.; Loh, N.-T.D.; Samoylova, L.; Santra, R.; Schneidmiller, E.A.; Tschentscher, T.; Yakubov, S.; Yoon, C.H.; et al. Start-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser. IUCrJ 2017, 4, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Hantke, M.F.; Ekeberg, T.; Maia, F.R.N.C. Condor: A simulation tool for flash X-ray imaging. J. Appl. Cryst. 2016, 49, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.; Damiani, D.; Ford, C.; Gaponenko, I.; Kroeger, W.; O’Grady, C.; Pines, J.; Tookey, T.; Weaver, M.; Perazzo, A. Data systems for the Linac Coherent Light Source. J. Appl. Cryst. 2016, 49, 1363–1369. [Google Scholar] [CrossRef]
- Damiani, D. Linac Coherent Light Source data analysis using psana. J. Appl. Cryst. 2016, 49, 672–679. [Google Scholar] [CrossRef]
- Daurer, B.J.; Hantke, M.F.; Nettelblad, C.; Maia, F.R.N.C. Hummingbird: Monitoring and analyzing flash X-ray imaging experiments in real time. J. Appl. Cryst. 2016, 49, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Psocake SPI Tutorial. Available online: https://confluence.slac.stanford.edu/display/PSDM/Psocake+SPI+tutorial (accessed on 15 October 2017).
- Coifman, R.R.; Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 2006, 21, 5–30. [Google Scholar] [CrossRef]
- Reddy, H.K.N.; Yoon, C.H.; Aquila, A.; Awel, S.; Ayyer, K.; Barty, A.; Berntsen, P.; Bielecki, J.; Bobkov, S.; Bucher, M.; et al. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source. Sci. Data 2017. [Google Scholar] [CrossRef] [PubMed]
- Fung, R.; Shneerson, V.; Saldin, D.K.; Ourmazd, A. Structure from fleeting illumination of faint spinning objects in flight. Nat. Phys. 2008, 5, 64. [Google Scholar] [CrossRef]
- Loh, N.D.; Bogan, M.J.; Elser, V.; Barty, A.; Boutet, S.; Bajt, S.; Hajdu, J.; Ekeberg, T.; Maia, F.R.N.C.; Schulz, J.; et al. Cryptotomography: Reconstructing 3D Fourier Intensities from Randomly Oriented Single-Shot Diffraction Patterns. Phys. Rev. Lett. 2010, 104, 225501. [Google Scholar] [CrossRef] [PubMed]
- Moths, B.; Ourmazd, A. Bayesian algorithms for recovering structure from single-particle diffraction snapshots of unknown orientation: A comparison. Acta Cryst. A 2011, 67, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Tegze, M.; Bortel, G. Atomic structure of a single large biomolecule from diffraction patterns of random orientations. J. Struct. Biol. 2012, 179, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, D.; Schwander, P.; Ourmazd, A. The symmetries of image formation by scattering. I. Theoretical framework. Opt. Express 2012, 20, 12799–12826. [Google Scholar] [CrossRef] [PubMed]
- Schwander, P.; Giannakis, D.; Yoon, C.H.; Ourmazd, A. The symmetries of image formation by scattering. II. Applications. Opt. Express 2012, 20, 12827–12849. [Google Scholar] [CrossRef] [PubMed]
- Saldin, D.K.; Poon, H.C.; Schwander, P.; Uddin, M.; Schmidt, M. Reconstructing an icosahedral virus from single-particle diffraction experiments. Opt. Express 2011, 19, 17318–17335. [Google Scholar] [CrossRef] [PubMed]
- Ayyer, K.; Lan, T.-Y.; Elser, V.; Loh, N.D. Dragonfly: An implementation of the expand-maximize-compress algorithm for single-particle imaging. J. Appl. Cryst. 2016, 49, 1320–1335. [Google Scholar] [CrossRef] [PubMed]
- Hosseinizadeh, A.; Mashayekhi, G.; Copperman, J.; Schwander, P.; Dashti, A.; Sepehr, R.; Fung, R.; Schmidt, M.; Yoon, C.H.; Hogue, B.G.; et al. Conformational landscape of a virus by single-particle X-ray scattering. Nat. Methods 2017, 14, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Kurta, R.P.; Donatelli, J.J.; Yoon, C.H.; Berntsen, P.; Bielecki, J.; Daurer, B.J.; DeMirci, H.; Fromme, P.; Hantke, M.F.; Maia, F.R.N.C.; et al. Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses. Phys. Rev. Lett. 2017, 119, 158102. [Google Scholar] [CrossRef] [PubMed]
- Donatelli, J.J.; Zwart, P.H.; Sethian, J.A. Iterative phasing for fluctuation X-ray scattering. Proc. Natl. Acad. Sci. USA 2015, 112, 10286–10291. [Google Scholar] [CrossRef] [PubMed]
- Gewin, V. Data sharing: An open mind on open data. Nature 2016, 529, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Ince, D.C.; Hatton, L.; Graham-Cumming, J. The case for open computer programs. Nature 2012, 482, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Announcement: Transparency upgrade for Nature journals. Nature 2017, 543, 288. [Google Scholar] [CrossRef]
- Baker, M. Independent labs to verify high-profile papers. Nature 2012. [Google Scholar] [CrossRef]
- Anonymous. Announcement: Reducing our irreproducibility. Nature 2013, 496, 398. [Google Scholar] [CrossRef]
- McNutt, M. Reproducibility. Science 2014, 343, 229. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.B.; Brown, A.W.; George, B.J.; Kaiser, K.A. Reproducibility: A tragedy of errors. Nature 2016, 530, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Loeb, A. Good data are not enough. Nature 2016, 539, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Daurer, B.J.; Okamoto, K.; Bielecki, J.; Maia, F.R.N.C.; Muhlig, K.; Seibert, M.M.; Hantke, M.F.; Nettelblad, C.; Benner, W.H.; Svenda, M.; et al. Experimental strategies for imaging bioparticles with femtosecond hard X-ray pulses. IUCrJ 2017, 4, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Ekeberg, T.; Svenda, M.; Seibert, M.M.; Abergel, C.; Maia, F.R.N.C.; Seltzer, V.; DePonte, D.P.; Aquila, A.; Andreasson, J.; Iwan, B.; et al. Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser. Sci. Data 2016, 3, 160060. [Google Scholar] [CrossRef] [PubMed]
- Hantke, M.F.; Hasse, D.; Ekeberg, T.; John, K.; Svenda, M.; Loh, D.; Martin, A.V.; Timneanu, N.; Larsson, D.S.D.; van der Schot, G.; et al. A data set from flash X-ray imaging of carboxysomes. Sci. Data 2016, 3, 160061. [Google Scholar] [CrossRef] [PubMed]
- Van der Schot, G.; Svenda, M.; Maia, F.R.N.C.; Hantke, M.F.; DePonte, D.P.; Seibert, M.M.; Aquila, A.; Schulz, J.; Kirian, R.A.; Liang, M.; et al. Open data set of live cyanobacterial cells imaged using an X-ray laser. Sci. Data 2016, 3, 160058. [Google Scholar] [CrossRef] [PubMed]
- Maia, F.R.N.C. The Coherent X-ray Imaging Data Bank. Nat. Methods 2012, 9, 854–855. [Google Scholar] [CrossRef] [PubMed]
- Coherent X-Ray Imaging Data Bank (CXIDB). Available online: http://www.cxidb.org (accessed on 15 October 2017).
- Dragonfly. Available online: https://github.com/duaneloh/Dragonfly/wiki (accessed on 15 October 2017).
- Condor (Online Tool for CXI Pattern Simulation). Available online: http://lmb.icm.uu.se/condor/simulation/ (accessed on 15 October 2017).
AMO, LCLS | CXI, LCLS | TXI, LCLS-II | SPB/SFX, European-XFEL | BL 2, SACLA | SwissFEL | |
---|---|---|---|---|---|---|
Detector | pnCCD | CSPAD b | ePi×10k | AGIPD d | MPCCD | JUNGFRAU f |
Pixel Size (μm2) | 75 × 75 | 110 × 110 | 100 × 100 | 200 × 200 | 50 × 50 | 75 × 75 |
Single Photon Sensitivity | Yes | Yes | Yes | Yes | Yes e | Yes |
Quantum Efficiency | >80%@0.3~12 keV | ~97%@8 keV | ~85%@5 keV | >80%@0.3~25 keV | ~85%@5.5keV | Up to 85%@1 keV |
Dynamic Range | 103@2 keV | 3.5 × 102@8 keV | ~104@8 keV | >104@12.5 keV | 1.2 × 103@6 keV | >104@12 keV |
Noise (e−) | 20/2 a | 300 | 120 | 265 | 300 | 100 |
Frame Rate (kHz) | 0.12 | 0.12 | 0.48/2~4/10~20 c | 4500 | 0.06 | 0.1~2.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Fan, J.; Li, H.; Jiang, H. Current Status of Single Particle Imaging with X-ray Lasers. Appl. Sci. 2018, 8, 132. https://doi.org/10.3390/app8010132
Sun Z, Fan J, Li H, Jiang H. Current Status of Single Particle Imaging with X-ray Lasers. Applied Sciences. 2018; 8(1):132. https://doi.org/10.3390/app8010132
Chicago/Turabian StyleSun, Zhibin, Jiadong Fan, Haoyuan Li, and Huaidong Jiang. 2018. "Current Status of Single Particle Imaging with X-ray Lasers" Applied Sciences 8, no. 1: 132. https://doi.org/10.3390/app8010132
APA StyleSun, Z., Fan, J., Li, H., & Jiang, H. (2018). Current Status of Single Particle Imaging with X-ray Lasers. Applied Sciences, 8(1), 132. https://doi.org/10.3390/app8010132