Editorial for Special Issue: “Application of Artificial Neural Networks in Geoinformatics”
1. Introduction
2. Applications of Artificial Neural Networks in Geoinformatics
3. Future of Artificial Neural Networks in Geoinformatics
Acknowledgments
Conflicts of Interest
References
- Lee, S.; Lee, M.; Jung, H. Data Mining Approaches for Landslide Susceptibility Mapping in Umyeonsan, Seoul, South Korea. Appl. Sci. 2017, 7, 683. [Google Scholar] [CrossRef]
- Oh, H.; Lee, S. Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree. Appl. Sci. 2017, 7, 1000. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Song, W.; Lee, M. Habitat Potential Mapping of Marten (Martes flavigula) and Leopard Cat (Prionailurus bengalensis) in South Korea Using Artificial Neural Network Machine Learning. Appl. Sci. 2017, 7, 912. [Google Scholar] [CrossRef]
- Shah, S.; Brijs, T.; Ahmad, N.; Pirdavani, A.; Shen, Y.; Basheer, M. Road Safety Risk Evaluation Using GIS-Based Data Envelopment Analysis—Artificial Neural Networks Approach. Appl. Sci. 2017, 7, 886. [Google Scholar] [CrossRef]
- Mezaal, M.; Pradhan, B.; Sameen, M.; Mohd Shafri, H.; Yusoff, Z. Optimized Neural Architecture for Automatic Landslide Detection from High-Resolution Airborne Laser Scanning Data. Appl. Sci. 2017, 7, 730. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Sun, G.; Zhang, Y. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images. Appl. Sci. 2017, 7, 968. [Google Scholar] [CrossRef]
- Hwang, J.; Chae, S.; Kim, D.; Jung, H. Application of Artificial Neural Networks to Ship Detection from X-Band Kompsat-5 Imagery. Appl. Sci. 2017, 7, 961. [Google Scholar] [CrossRef]
- Piscini, A.; Romaniello, V.; Bignami, C.; Stramondo, S. A New Damage Assessment Method by Means of Neural Network and Multi-Sensor Satellite Data. Appl. Sci. 2017, 7, 781. [Google Scholar] [CrossRef]
- Kadavi, P.; Lee, W.; Lee, C. Analysis of the Pyroclastic Flow Deposits of Mount Sinabung and Merapi Using Landsat Imagery and the Artificial Neural Networks Approach. Appl. Sci. 2017, 7, 935. [Google Scholar] [CrossRef]
- Kwon, S.; Jung, H.; Baek, W.; Kim, D. Classification of Forest Vertical Structure in South Korea from Aerial Orthophoto and Lidar Data Using an Artificial Neural Network. Appl. Sci. 2017, 7, 1046. [Google Scholar] [CrossRef]
- Foody, G. Impacts of Sample Design for Validation Data on the Accuracy of Feedforward Neural Network Classification. Appl. Sci. 2017, 7, 888. [Google Scholar] [CrossRef]
- Byon, Y.; Ha, J.; Cho, C.; Kim, T.; Yeun, C. Real-Time Transportation Mode Identification Using Artificial Neural Networks Enhanced with Mode Availability Layers: A Case Study in Dubai. Appl. Sci. 2017, 7, 923. [Google Scholar] [CrossRef]
- Sameen, M.; Pradhan, B. Severity Prediction of Traffic Accidents with Recurrent Neural Networks. Appl. Sci. 2017, 7, 476. [Google Scholar] [CrossRef]
- Afonso, N.; Pires, J. Characterization of Surface Ozone Behavior at Different Regimes. Appl. Sci. 2017, 7, 944. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S. Editorial for Special Issue: “Application of Artificial Neural Networks in Geoinformatics”. Appl. Sci. 2018, 8, 55. https://doi.org/10.3390/app8010055
Lee S. Editorial for Special Issue: “Application of Artificial Neural Networks in Geoinformatics”. Applied Sciences. 2018; 8(1):55. https://doi.org/10.3390/app8010055
Chicago/Turabian StyleLee, Saro. 2018. "Editorial for Special Issue: “Application of Artificial Neural Networks in Geoinformatics”" Applied Sciences 8, no. 1: 55. https://doi.org/10.3390/app8010055
APA StyleLee, S. (2018). Editorial for Special Issue: “Application of Artificial Neural Networks in Geoinformatics”. Applied Sciences, 8(1), 55. https://doi.org/10.3390/app8010055