Photovoltaic Power Systems Optimization Research Status: A Review of Criteria, Constrains, Models, Techniques, and Software Tools
Abstract
:1. Introduction
2. Modelling of PV System’s Components
2.1. Modelling of Photovoltaic Panel
2.2. Modelling of Battery System
3. Available Photovoltaic Software
3.1. PV System Simulation Tools
3.2. Economic Evaluation Tools
3.3. Planning and Analysis Tools
3.4. Solar Radiation Maps
4. Photovoltaic Systems Optimization Criteria
4.1. Reliability Analysis
4.2. System Cost Analysis
5. Standalone PV System Optimization Technique
5.1. Intuitive Methods
5.2. Numerical Methods
5.3. Analytical Methods
6. Grid Connected PV System Optimization Technique
6.1. Numerical Methods
6.2. Computer Aided Method
6.3. Genetic Algorithm (GA)
6.4. Particle Swarm Optimization (PSO)
6.5. Evolutionary Programming (EP)
7. Sizing Constraint
7.1. Space Constraint
7.2. Budget Constraint
7.3. Energy Constraint
8. Conclusions
Funding
Conflicts of Interest
References
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 2008, 34, 574–632. [Google Scholar] [CrossRef]
- Näsvall, D. Development of a Model for Physical and Economical Optimization of Distributed PV Systems. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2013. [Google Scholar]
- Perez-Gallardo, J.; Azzaro-Pantel, C.; Astier, S.; Domenech, S.; Aguilar-Lasserre, A. Ecodesign of photovoltaic grid-connected systems. Renew. Energy 2014, 64, 82–97. [Google Scholar] [CrossRef]
- Sulaiman, S.I.; Rahman, T.K.A.; Musirin, I.; Shaari, S.; Sopian, K. An intelligent method for sizing optimization in grid-connected photovoltaic system. Sol. Energy 2012, 86, 2067–2082. [Google Scholar] [CrossRef]
- Zainuddin, H.; Shaari, S.; Omar, A.M.; Sulaiman, S.I. Power prediction for grid-connected photovoltaic system in Malaysia. In Proceedings of the 2011 3rd International Symposium & Exhibition in Sustainable Energy & Environment (ISESEE), Melaka, Malaysia, 1–3 June 2011; pp. 110–113. [Google Scholar]
- Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Appl. Energy 2010, 87, 380–389. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhao, Z. Grid-connected photovoltaic power systems: Technical and potential problems—A review. Renew. Sustain. Energy Rev. 2010, 14, 112–129. [Google Scholar] [CrossRef]
- Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [Google Scholar] [CrossRef]
- Baños, R.; Manzano-Agugliaro, F.; Montoya, F.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Khare, A.; Rangnekar, S. A review of particle swarm optimization and its applications in solar photovoltaic system. Appl. Soft Comput. 2013, 13, 2997–3006. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S.; Hontoria, L.; Shaari, S. Artificial intelligence techniques for sizing photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2009, 13, 406–419. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K. A review of photovoltaic systems size optimization techniques. Renew. Sustain. Energy Rev. 2013, 22, 454–465. [Google Scholar] [CrossRef]
- Lalwani, M.; Kothari, D.; Singh, M. Investigation of solar photovoltaic simulation softwares. Int. J. Appl. Eng. Res. 2010, 1, 585–601. [Google Scholar]
- Sinha, S.; Chandel, S. Review of software tools for hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2014, 32, 192–205. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K. A review of solar energy modeling techniques. Renew. Sustain. Energy Rev. 2012, 16, 2864–2869. [Google Scholar] [CrossRef]
- Demain, C.; Journée, M.; Bertrand, C. Evaluation of different models to estimate the global solar radiation on inclined surfaces. Renew. Energy 2013, 50, 710–721. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Processes; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Noorian, A.M.; Moradi, I.; Kamali, G.A. Evaluation of 12 models to estimate hourly diffuse irradiation on inclined surfaces. Renew. Energy 2008, 33, 1406–1412. [Google Scholar] [CrossRef]
- Abdulkadir, M.; Samosir, A.; Yatim, A. Modeling and Simulation based Approach of Photovoltaic system in Simulink model. ARPN J. Eng. Appl. Sci. 2012, 7.5, 616–623. [Google Scholar]
- Rus-Casas, C.; Aguilar, J.; Rodrigo, P.; Almonacid, F.; Pérez-Higueras, P. Classification of methods for annual energy harvesting calculations of photovoltaic generators. Energy Convers. Manag. 2014, 78, 527–536. [Google Scholar] [CrossRef]
- Sera, D.; Teodorescu, R.; Rodriguez, P. PV panel model based on datasheet values. In Proceedings of the 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 4–7 June 2007; pp. 2392–2396. [Google Scholar]
- Kornelakis, A.; Koutroulis, E. Methodology for the design optimisation and the economic analysis of grid-connected photovoltaic systems. IET Renew. Power Gener. 2009, 3, 476–492. [Google Scholar] [CrossRef]
- Nema, P.; Nema, R.; Rangnekar, S. A current and future state of art development of hybrid energy system using wind and PV-solar: A review. Renew. Sustain. Energy Rev. 2009, 13, 2096–2103. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K.; Mahmoud, M. Optimal sizing of the energy sources in hybrid PV/diesel systems: A case study for Malaysia. Int. J. Green Energy 2013, 10, 41–52. [Google Scholar] [CrossRef]
- Sulaiman, S.I.; Rahman, T.K.A.; Musirin, I.; Shaari, S. Sizing grid-connected photovoltaic system using genetic algorithm. In Proceedings of the 2011 IEEE Symposium on Industrial Electronics and Applications, Langkawi, Malaysia, 25–28 September 2011; pp. 505–509. [Google Scholar]
- Mellit, A.; Benghanem, M.; Kalogirou, S.A. Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure. Renew. Energy 2007, 32, 285–313. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S.A. ANFIS-based modelling for photovoltaic power supply system: A case study. Renew. Energy 2011, 36, 250–258. [Google Scholar] [CrossRef]
- Sonnenenergie, D.G.F. Planning and Installing Photovoltaic Systems: A Guide for Installers, Architects and Engineers; Earthscan: Oxford, UK, 2008. [Google Scholar]
- Huang, B.; Hsu, P.; Wu, M.; Ho, P. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system. Sol. Energy 2010, 84, 822–830. [Google Scholar] [CrossRef]
- Zahedi, A. Development of an electrical model for a PV/battery system for performance prediction. Renew. Energy 1998, 15, 531–534. [Google Scholar] [CrossRef]
- Li, J.; Wei, W.; Xiang, J. A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids. Energies 2012, 5, 5307–5323. [Google Scholar] [CrossRef] [Green Version]
- Piller, S.; Perrin, M.; Jossen, A. Methods for state-of-charge determination and their applications. J. Power Sources 2001, 96, 113–120. [Google Scholar] [CrossRef]
- Arun, P.; Banerjee, R.; Bandyopadhyay, S. Optimum sizing of photovoltaic battery systems incorporating uncertainty through design space approach. Sol. Energy 2009, 83, 1013–1025. [Google Scholar] [CrossRef]
- Arun, P.; Banerjee, R.; Bandyopadhyay, S. Sizing curve for design of isolated power systems. Energy Sustain. Dev. 2007, 11, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Arun, P.; Banerjee, R.; Bandyopadhyay, S. Optimum sizing of battery-integrated diesel generator for remote electrification through design-space approach. Energy 2008, 33, 1155–1168. [Google Scholar] [CrossRef]
- Urtasun, A.; Sanchis, P.; Barricarte, D.; Marroyo, L. Energy management strategy for a battery-diesel stand-alone system with distributed PV generation based on grid frequency modulation. Renew. Energy 2014, 66, 325–336. [Google Scholar] [CrossRef]
- Khatib, T.; Elmenreich, W. Novel simplified hourly energy flow models for photovoltaic power systems. Energy Convers. Manag. 2014, 79, 441–448. [Google Scholar] [CrossRef]
- Weniger, J.; Tjaden, T.; Quaschning, V. Sizing of Residential PV Battery Systems. Energy Procedia 2014, 46, 78–87. [Google Scholar] [CrossRef]
- Gitizadeh, M.; Fakharzadegan, H. Battery capacity determination with respect to optimized energy dispatch schedule in grid-connected photovoltaic (PV) systems. Energy 2014, 65, 665–674. [Google Scholar] [CrossRef]
- Parra, D.; Walker, G.S.; Gillott, M. Modeling of PV generation, battery and hydrogen storage to investigate the benefits of energy storage for single dwelling. Sustain. Cities Soc. 2014, 10, 1–10. [Google Scholar] [CrossRef]
- Achaibou, N.; Haddadi, M.; Malek, A. Modeling of lead acid batteries in PV systems. Energy Procedia 2012, 18, 538–544. [Google Scholar] [CrossRef]
- Badescu, V. Dynamic model of a complex system including PV cells, electric battery, electrical motor and water pump. Energy 2003, 28, 1165–1181. [Google Scholar] [CrossRef]
- Badescu, V. Time dependent model of a complex PV water pumping system. Renew. Energy 2003, 28, 543–560. [Google Scholar] [CrossRef]
- Cherif, A.; Jraidi, M.; Dhouib, A. A battery ageing model used in stand alone PV systems. J. Power Sources 2002, 112, 49–53. [Google Scholar] [CrossRef]
- Stein, J.S.; Hansen, C.W.; Cameron, C.P. Evaluation of PV Performance Models and Their Impact on Project Risk; Sandia National Laboratories: Albuquerque, NM, USA, 2010. [Google Scholar]
- Menicucci, D.F.; Fernandez, J. Users Manual for PVFORM: A Photovoltaic System Simulation Program for Stand-Alone and Grid-Interactive Applications; Sandia National Labs: Albuquerque, NM, USA, 1989. [Google Scholar]
- INSEL—The Graphical Programming Language for the Simulation of Renewable Energy Systems. Available online: http://www.insel.eu/ (accessed on 23 February 2018).
- Klise, G.T.; Stein, J.S. Models Used to Assess the Performance of Photovoltaic Systems; Report SAND2009-8258; Sandia National Laboratories: Albuquerque, NM, USA, 2009. [Google Scholar]
- Klein, S.A.E.A. TRNSYS 17: A Transient System Simulation Program. Available online: http://sel.me.wisc.edu/trnsys (accessed on 23 February 2010).
- Shandilya, K.K.; Kumar, A. Available energy assessment software. Environ. Prog. Sustain. Energy 2013, 32, 170–175. [Google Scholar] [CrossRef]
- HOMER Software. Available online: http://www.homerenergy.com/ (accessed on 23 February 2018).
- Natural Resources Canada. Available online: http://www.retscreen.net/ang/g_photo.php (accessed on 23 February 2018).
- Naional Renewable Energy Laboratory. Available online: https://sam.nrel.gov/ (accessed on 23 February 2018).
- Gilman, P.; Dobos, A. SAM 2011.12. 2: General Description. Contract 2012, 303, 275–3000. [Google Scholar]
- Marion, B.; Anderberg, M. PVWATTS-An Online Performance Calculator for Grid-Connected PV Systems. In Proceedings of the Solar Conference, Madison, WI, USA, 16–21 June 2000; pp. 119–124. [Google Scholar]
- Marion, B.; Anderberg, M.; Gray-Hann, P. Recent Revisions to PVWATTS: United States; Department of Energy: Washington, DC, USA, 2005. [Google Scholar]
- Mermoud, A. PVSYST Version 3.2. User’s Manual; University of Geneva, University Center for the Study of Energy Problems: Geneva, Switzerland, 2002; Available online: http://www.pvsyst.com/ (accessed on 1 December 2002).
- PVsyst: Software for Photovoltaic System. Available online: http://www.pvsyst.com/en/ (accessed on 23 February 2018).
- Details of PVSOL Experts. Available online: http://www.valentin.de/ (accessed on 23 February 2018).
- SolarPro. Available online: http://www.lapsys.co.jp/english/products/pro.html (accessed on 23 February 2018).
- F-Chart Software. Available online: http://www.fchart.com/fchart/ (accessed on 23 February 2014).
- SolarDesignTool. Available online: http://get.solardesigntool.com/feature/pv-solar-system-design/ (accessed on 23 February 2014).
- Maui Solar Energy Software Corporation Products. Available online: http://www.mauisolarsoftware.com/ (accessed on 23 February 2014).
- Dufo-López, R. iHOGA; Electrical Engineering Department, University of Zaragoza: Zaragoza, Spain, 2012. [Google Scholar]
- Khatib, T.; Mohamed, A.; Sopian, K. A Software Tool for Optimal Sizing of PV Systems in Malaysia. J. Model. Simul. Eng. 2012, 2012, 969248. [Google Scholar] [CrossRef]
- Pochacker, M.; Khatib, T.; Elmenreich, W. The Microgrid Simulation Tool RAPS: Description and Case Study. In Proceedings of the 2014 IEEE Innovative Smart Grid Technologies Conference—Asia (ISGT ASIA), Kuala Lumpur, Malaysia, 20–23 May 2014. [Google Scholar]
- Huld, T.; Suri, M. PVGIS, PV Estimation Utility. 2010. Available online: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php (accessed on 23 February 2018).
- About SolarGIS. Available online: http://solargis.info/doc/ (accessed on 29 September 2018).
- Soras, C.; Makios, V. A novel method for determining the optimum size of stand-alone photovoltaic systems. Sol. Cells 1988, 25, 127–142. [Google Scholar] [CrossRef]
- Egido, M.; Lorenzo, E. The sizing of stand alone PV-system: A review and a proposed new method. Sol. Energy Mater. Sol. Cells 1992, 26, 51–69. [Google Scholar] [CrossRef]
- Arab, A.H.; Driss, B.A.; Amimeur, R.; Lorenzo, E. Photovoltaic systems sizing for Algeria. Sol. Energy 1995, 54, 99–104. [Google Scholar] [CrossRef]
- Ibrahim, O.E.E. Sizing stand-alone photovoltaic systems for various locations in Sudan. Appl. Energy 1995, 52, 133–140. [Google Scholar] [CrossRef]
- Shrestha, G.; Goel, L. A study on optimal sizing of stand-alone photovoltaic stations. IEEE Trans. Energy Convers. 1998, 13, 373–378. [Google Scholar] [CrossRef]
- Mellit, A.; Benghanem, M.; Arab, A.H.; Guessoum, A. An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: Application for isolated sites in Algeria. Renew. Energy 2005, 30, 1501–1524. [Google Scholar] [CrossRef]
- Hontoria, L.; Aguilera, J.; Zufiria, P. A new approach for sizing stand alone photovoltaic systems based in neural networks. Sol. Energy 2005, 78, 313–319. [Google Scholar] [CrossRef]
- Kaushika, N.; Gautam, N.K.; Kaushik, K. Simulation model for sizing of stand-alone solar PV system with interconnected array. Sol. Energy Mater. Sol. Cells 2005, 85, 499–519. [Google Scholar] [CrossRef]
- Mellit, A.; Benghanem, M. Sizing of stand-alone photovoltaic systems using neural network adaptive model. Desalination 2007, 209, 64–72. [Google Scholar] [CrossRef]
- Celik, A.; Muneer, T.; Clarke, P. Optimal sizing and life cycle assessment of residential photovoltaic energy systems with battery storage. Prog. Photovolt. Res. Appl. 2008, 16, 69–85. [Google Scholar] [CrossRef]
- Posadillo, R.; Luque, R.L. Approaches for developing a sizing method for stand-alone PV systems with variable demand. Renew. Energy 2008, 33, 1037–1048. [Google Scholar] [CrossRef]
- Posadillo, R.; Luque, R.L. A sizing method for stand-alone PV installations with variable demand. Renew. Energy 2008, 33, 1049–1055. [Google Scholar] [CrossRef]
- Mellit, A. ANN-based GA for generating the sizing curve of stand-alone photovoltaic systems. Adv. Eng. Softw. 2010, 41, 687–693. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K.; Mahmoud, M. A new approach for optimal sizing of standalone photovoltaic systems. Int. J. Photoenergy 2012, 2012, 391213. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, W.; Lu, L.; Fang, Z. Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm. Sol. Energy 2008, 82, 354–367. [Google Scholar] [CrossRef]
- Weixiang, S. Design of standalone photovoltaic system at minimum cost in Malaysia. In Proceedings of the 2008 3rd IEEE Conference on Industrial Electronics and Applications, Singapore, 3–5 June 2008; pp. 702–707. [Google Scholar]
- Shen, W. Optimally sizing of solar array and battery in a standalone photovoltaic system in Malaysia. Renew. Energy 2009, 34, 348–352. [Google Scholar] [CrossRef]
- Askari, I.B.; Ameri, M. Optimal sizing of photovoltaic—Battery power systems in a remote region in Kerman, Iran. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 563–570. [Google Scholar] [CrossRef]
- Cabral, C.V.T.; Diniz, A.S.A.C.; Martins, J.H.; Toledo, O.M.; Neto, L.D.V.B.M. A stochastic method for stand-alone photovoltaic system sizing. Sol. Energy 2010, 84, 1628–1636. [Google Scholar] [CrossRef]
- Bilal, B.O.; Sambou, V.; Ndiaye, P.; Kebe, C.; Ndongo, M. Multi-objective design of PV-wind-batteries hybrid systems by minimizing the annualized cost system and the loss of power supply probability (LPSP). In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February 2013; pp. 861–868. [Google Scholar]
- Yang, H.; Wei, Z.; Chengzhi, L. Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Appl. Energy 2009, 86, 163–169. [Google Scholar] [CrossRef]
- Park, C.S.; Kumar, P.; Kumar, N. Fundamentals of Engineering Economics; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Kamel, S.; Dahl, C. The economics of hybrid power systems for sustainable desert agriculture in Egypt. Energy 2005, 30, 1271–1281. [Google Scholar] [CrossRef]
- Applasamy, V. Cost evaluation of a stand-alone residential photovoltaic power system in Malaysia. In Proceedings of the 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA), Langkawi, Malaysia, 25–28 September 2011; pp. 214–218. [Google Scholar]
- Samimi, J.; Soleimani, E.A.; Zabihi, M. Optimal sizing of photovoltaic systems in varied climates. Sol. Energy 1997, 60, 97–107. [Google Scholar] [CrossRef]
- Bhuiyan, M.; Asgar, M.A. Sizing of a stand-alone photovoltaic power system at Dhaka. Renew. Energy 2003, 28, 929–938. [Google Scholar] [CrossRef]
- Nafeh, A. Design and Economic Analysis of a stand-alone PV system to electrify a remote area household in Egypt. Open Renew. Energy J. 2009, 2, 33–37. [Google Scholar] [CrossRef]
- Chapman, R.N. Development of sizing nomograms for stand-alone photovoltaic/storage systems. Sol. Energy 1989, 43, 71–76. [Google Scholar] [CrossRef]
- Notton, G.; Muselli, M.; Poggi, P.; Louche, A. Autonomous photovoltaic systems: Influences of some parameters on the sizing: Simulation timestep, input and output power profile. Renew. Energy 1996, 7, 353–369. [Google Scholar] [CrossRef]
- Kaldellis, J. Optimum technoeconomic energy autonomous photovoltaic solution for remote consumers throughout Greece. Energy Convers. Manag. 2004, 45, 2745–2760. [Google Scholar] [CrossRef]
- Balouktsis, A.; Karapantsios, T.; Antoniadis, A.; Paschaloudis, D.; Bezergiannidou, A.; Bilalis, N. Sizing stand-alone photovoltaic systems. Int. J. Photoenergy 2006, 2006, 73650. [Google Scholar] [CrossRef]
- Fragaki, A.; Markvart, T. Stand-alone PV system design: Results using a new sizing approach. Renew. Energy 2008, 33, 162–167. [Google Scholar] [CrossRef]
- Markvart, T.; Fragaki, A.; Ross, J. PV system sizing using observed time series of solar radiation. Sol. Energy 2006, 80, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Barra, L.; Catalanotti, S.; Fontana, F.; Lavorante, F. An analytical method to determine the optimal size of a photovoltaic plant. Sol. Energy 1984, 33, 509–514. [Google Scholar] [CrossRef]
- Bartoli, B.; Cuomo, V.; Fontana, F.; Serio, C.; Silvestrini, V. The design of photovoltaic plants: An optimization procedure. Appl. Energy 1984, 18, 37–47. [Google Scholar] [CrossRef]
- Bucciarelli, L.L., Jr. Estimating loss-of-power probabilities of stand-alone photovoltaic solar energy systems. Sol. Energy 1984, 32, 205–209. [Google Scholar] [CrossRef]
- Bucciarelli, L.L., Jr. The effect of day-to-day correlation in solar radiation on the probability of loss-of-power in a stand-alone photovoltaic energy system. Sol. Energy 1986, 36, 11–14. [Google Scholar] [CrossRef]
- Gordon, J. Optimal sizing of stand-alone photovoltaic solar power systems. Sol. Cells 1987, 20, 295–313. [Google Scholar] [CrossRef]
- Hontoria, L.; Aguilera, J.; Zufiria, P. A tool for obtaining the LOLP curves for sizing off-grid photovoltaic systems based in neural networks. In Proceedings of the 3rd World Conference onPhotovoltaic Energy Conversion, Osaka, Japan, 11–18 May 2003; pp. 2423–2426. [Google Scholar]
- Gong, X.; Kulkarni, M. Design optimization of a large scale rooftop photovoltaic system. Sol. Energy 2005, 78, 362–374. [Google Scholar] [CrossRef]
- Fernández-Infantes, A.; Contreras, J.; Bernal-Agustín, J.L. Design of grid connected PV systems considering electrical, economical and environmental aspects: A practical case. Renew. Energy 2006, 31, 2042–2062. [Google Scholar] [CrossRef]
- Kerekes, T.; Koutroulis, E.; Eyigun, S.; Teodorescu, R.; Katsanevakis, M.; Sera, D. A practical optimization method for designing large PV plants. In Proceedings of the 2011 IEEE International Symposium on Industrial Electronics, Gdansk, Poland, 27–30 June 2011; pp. 2051–2056. [Google Scholar]
- Kornelakis, A.; Marinakis, Y. Contribution for optimal sizing of grid-connected PV-systems using PSO. Renew. Energy 2010, 35, 1333–1341. [Google Scholar] [CrossRef]
- Kornelakis, A. Multiobjective Particle Swarm Optimization for the optimal design of photovoltaic grid-connected systems. Sol. Energy 2010, 84, 2022–2033. [Google Scholar] [CrossRef] [Green Version]
- Kerekes, T.; Koutroulis, E.; Sera, D.; Teodorescu, R.; Katsanevakis, M. An Optimization Method for Designing Large PV Plants. IEEE J. Photovolt. 2012, 3, 814–822. [Google Scholar] [CrossRef]
- Bäck, T.; Rudolph, G.; Schwefel, H.-P. Evolutionary programming and evolution strategies: Similarities and differences. In Proceedings of the Second Annual Conference on Evolutionary Programming, La Jolla, CA, USA, 25–26 February 1993. [Google Scholar]
- Morshed, M.J.; Hmida, J.B.; Fekih, A. A Probabilistic Multi-Objective Approach for Power Flow Optimization in hybrid Wind-PV-PEV Systems. Appl. Energy 2018, 211, 1136–1149. [Google Scholar] [CrossRef]
- Islam, M.S.; Mithulananthan, N. PV based EV charging at universities using supplied historical PV output ramp. Renew. Energy 2018, 118, 306–327. [Google Scholar] [CrossRef]
- Azizipanah-Abarghooee, R.; Niknam, T.; Bina, M.A.; Zare, M. Coordination of combined heat and power-thermal-wind photovoltaic units in economic load dispatch using chance constrained and jointly distributed random variables methods. Energy 2015, 79, 50–67. [Google Scholar] [CrossRef]
Merits | Demerits | |
---|---|---|
Intuitive |
|
|
Numerical |
|
|
Analytical |
|
|
Year | Authors | Technique | Reliability Analysis | System Cost Analysis | Reference |
---|---|---|---|---|---|
1984 | Barra, L., et al. | Analaytical | [102] | ||
1984 | Bartoli, B., et al. | Analaytical | [103] | ||
1984 | Bucciarelli Jr, et al. | Analaytical | [104] | ||
1986 | Bucciarelli Jr, et al. | Analaytical | [105] | ||
1987 | Gordon, J. | Analaytical | [106] | ||
1988 | Soras, C., et al. | Numerical | LOLP | LCC | [69] |
1989 | Chapman, R.N. | Numerical | [96] | ||
1992 | Egido, M., et al. | Analaytical | LOLP | [70] | |
1995 | Elsheikh Ibrahim, et al. | Numerical | LOLP | [72] | |
1995 | Hadj Arab, A., et al. | Numerical | LOLP | [97] | |
1996 | Notton, G., et al. | Numerical | LCOE | [97] | |
1997 | Samimi, J., et al. | Intuitive | [92] | ||
1998 | Shrestha, G., et al. | Numerical | LOLP | [73] | |
2003 | Bhuiyan, M., et al. | Intuitive | [94] | ||
2004 | Kaldellis, J. | Numerical | [98] | ||
2005 | Hontoria, L., et al. | Analaytical | LOLP | [75] | |
2005 | Mellit, A., et al. | Numerical | LOLP | [74] | |
2005 | Kaushika, N., et al. | Numerical | LOLP | [76] | |
2006 | Markvart, T., et al. | Analaytical | [101] | ||
2006 | Balouktsis, A., et al. | Numerical | [99] | ||
2007 | Mellit, A., et al. | Numerical | LOLP | [77] | |
2007 | Mellit, A., et al. | Numerical | LOLP | [26] | |
2008 | Fragaki, A., et al. | Numerical | Others | [100] | |
2008 | Celik, A., et al. | Numerical | LOLP | LCC | [78] |
2008 | Weixiang, Shen. | Numerical | LPSP | LCC | [84] |
2008 | Posadillo, R., et al. | Analaytical | LOLP | [79] | |
2008 | Posadillo, R., et al. | Analaytical | LOLP | [80] | |
2009 | Shen, W. | Numerical | LPSP | Others | [85] |
2009 | Arun, P., et al. | Numerical | Others | [33] | |
2009 | Askari, I.B., et al. | Numerical | LPSP | LCOE | [86] |
2009 | Nafeh, A. | Intuitive | LCC | [95] | |
2010 | Mellit, A. | Numerical | LOLP | [81] | |
2010 | Cabral, C.V.T., et al. | Numerical | LPSP | Others | [87] |
2012 | Khatib, T, et al. | Analaytical | LOLP | [82] |
Year | Authors | Technique | System Cost Analysis | Reference |
---|---|---|---|---|
2005 | Gong, X., et al. | Numerical | Others | [108] |
2006 | Fernández-Infantes, A., et al. | Evolutionary Programming | NPC | [109] |
2009 | Kornelakis, A., et al. | GA | NPC | [22] |
2010 | Kornelakis, A. | PSO | NPC | [111] |
2010 | Kornelakis, A., et al. | Multi-Objective | NPC | [112] |
2011 | Sulaiman, S.I., et al. | GA | [25] | |
2011 | Kerekes, Tamas, et al. | GA | LCOE | [110] |
2012 | Kerekes, T., et al. | GA | LCOE | [112] |
2012 | Sulaiman, S.I., et al. | Evolutionary Programming | NPC | [4] |
2013 | Näsvall, D. | Numerical | LCOE | [2] |
2014 | Perez-Gallardo, J.R., et al. | GA | Others | [3] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsadi, S.; Khatib, T. Photovoltaic Power Systems Optimization Research Status: A Review of Criteria, Constrains, Models, Techniques, and Software Tools. Appl. Sci. 2018, 8, 1761. https://doi.org/10.3390/app8101761
Alsadi S, Khatib T. Photovoltaic Power Systems Optimization Research Status: A Review of Criteria, Constrains, Models, Techniques, and Software Tools. Applied Sciences. 2018; 8(10):1761. https://doi.org/10.3390/app8101761
Chicago/Turabian StyleAlsadi, Samer, and Tamer Khatib. 2018. "Photovoltaic Power Systems Optimization Research Status: A Review of Criteria, Constrains, Models, Techniques, and Software Tools" Applied Sciences 8, no. 10: 1761. https://doi.org/10.3390/app8101761
APA StyleAlsadi, S., & Khatib, T. (2018). Photovoltaic Power Systems Optimization Research Status: A Review of Criteria, Constrains, Models, Techniques, and Software Tools. Applied Sciences, 8(10), 1761. https://doi.org/10.3390/app8101761