A Source Pollution Control Measure Based on Spatial-Temporal Distribution Characteristic of the Runoff Pollutants at Urban Pavement Sites
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Sample Analysis and Simulated Pavement Runoff
2.3. Purification Materials
2.4. Purification Experiment
3. Results and Discussion
3.1. Spatial-Temporal Distribution Characteristics Analysis
3.1.1. Spatial Distribution Characteristics of Pavement Runoff Pollutants
3.1.2. Temporal Distribution Characteristics of Pavement Runoff Pollutants
3.2. A Source Control Measure Based on the Optimal Combinations of Purification Materials
4. Conclusions
- (1)
- The concentrations of Pb and Zn at the intersection were much higher than those at other sections of the road. The level of suspended solids far exceeded the limitation near the site where frequent human activities occurred. The spatial distributions of dissolved pollutants were similar to that of SS because of their high attachment to particles.
- (2)
- For all pollutants, the cumulative concentration reached a high level in a very short time and then ascended slowly. They were finally stable with the extension of rainfall duration. This feature was consistent with the property of the natural logarithmic function.
- (3)
- Six materials showed different removal rates for different pollutants. Based on the spatial-temporal distribution characteristics of pavement runoff pollutants, combinations of purification materials applicable for different pollution situations were recommended.
- (4)
- Different purification materials were integrated into a source control measure for treating pavement runoff with high pollution potential.
- (5)
- Depending on area locations, surrounding environment and rainfall events, the spatial and temporal distribution characteristics of pavement runoff were different. Only on the premise of understanding the actual pollution situations can engineers integrate different purification materials in the PCMs to make the removal of pollutants more effective and efficient.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Finnemore, E.J.; Lynard, W.G. Management and control technology for urban stormwater pollution. J. Water Pollut. Control Fed. 1982, 54, 1099–1111. [Google Scholar] [CrossRef]
- Van Roon, M. Low impact urban design and development: Catchment-based structure planning to optimize ecological outcomes. Urban Water J. 2011, 8, 293–308. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Environmental Protection Agency. National Pollutant Discharge Elimination System (NPDES) Definitions; 40 C.F.R. § 122.2 (2011a); United States Environmental Protection Agency: Washington, DC, USA, 2011.
- Environmental Protection Agency. National Pollutant Discharge Elimination System (NPDES) Establishing Limitations, Standards, and Other Permit Conditions; 40 C.F.R. §122.4 (2011b); United States Environmental Protection Agency: Washington, DC, USA, 2011.
- Ghassemi, A. Handbook of Pollution Control and Waste Minimization, 1st ed.; Marcel Dekker Inc.: New York, NY, USA, 2002; pp. 389–392. [Google Scholar]
- Bannerman, R.T.; Owens, D.W.; Dodds, R.B.; Hornewer, N.J. Sources of pollutants in Wisconsin stormwater. Water Sci. Technol. 1993, 28, 241–259. [Google Scholar] [CrossRef]
- McCarthy, D.T.; Hathaway, J.M.; Hunt, W.F.; Deletic, A. Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff. Water Res. 2012, 46, 6661–6670. [Google Scholar] [CrossRef] [PubMed]
- Gorgoglione, A.; Bombardelli, F.A.; Pitton, B.J.L.; Oki, L.R.; Haver, D.L.; Young, T.M. Role of Sediments in Insecticide Runoff from Urban Surfaces: Analysis and Modeling. Int. J. Environ. Res. Public Health 2018, 15, 1464. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.L.; Kim, H.; Kim, Y.; Han, M.Y. Characteristics of the event mean concentration (EMC) from rainfall runoff on an urban highway. Environ. Pollut. 2011, 159, 884–888. [Google Scholar] [CrossRef]
- Geonha, K.; Joonghyun, Y. Diffuse pollution loading from urban storm water runoff in Daejeon city, Korea. J. Environ. Manag. 2007, 85, 9–16. [Google Scholar] [CrossRef]
- Oshawa, K. Experimental Study on the Clogging of Voids of Porous Concrete and Porous Asphalt; Technical Workshop 35th Kanto Branch Society of Civil Engineers: Tokyo, Japan, 2008. [Google Scholar]
- Barrett, M.E.; Malina, J.F.; Charbeneau, R.J. A Review and Evaluation of Literature Pertaining to the Quantity and Control of Pollution from Highway Runoff and Construction; Bureau of Engineering Research, University of Texas at Austin, J.J. Pickle Research Campus: Austin, TX, USA, 1995. [Google Scholar]
- Barrett, M.E.; Malina, J.F.; Charbeneau, R.J.; Ward, G.H. Characterization of highway runoff in Austin, Texas area. J. Environ. Eng. 2009, 124, 131–137. [Google Scholar] [CrossRef]
- Kayhaniana, M.; Stransky, C.; Bayc, S.; Lau, S.L.; Stenstrom, M.K. Toxicity of urban highway runoff with respect to storm duration. Sci. Total Environ. 2008, 389, 386–406. [Google Scholar] [CrossRef] [PubMed]
- Kayhaniana, M.; Fruchtmanb, B.D.; Gulliver, J.S.; Montanaro, C.; Ranieri, E.; Wuertz, S. Review of highway runoff characteristics: Comparative analysis and universal implications. Water Res. 2012, 46, 6609–6624. [Google Scholar] [CrossRef] [PubMed]
- Modugno, M.D.; Gioia, A.; Gorgoglione, A.; Iacobellis, V.; la Forgia, G.; Piccinni, A.F.; Ranieri, E. Build-Up/Wash-Off monitoring and assessment for sustainable management of first flush in an urban area. Sustainability 2015, 7, 5050–5070. [Google Scholar] [CrossRef]
- Herngren, L.; Goonetilleke, A.; Ayoko, G.A. Understanding heavy metal and suspended solids relationships in urban stormwater. J. Environ. Manag. 2005, 76, 149–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winston, R.J.; Hunt, W.F. Characterizing Runoff from Roads: Particle Size Distributions, Nutrients, and Gross Solids. J. Environ. Eng. 2017, 143, 1–12. [Google Scholar] [CrossRef]
- Mayer, T.; Rochfort, Q.; Marsalek, J.; Parrott, J.; Servos, M.; Baker, M.; McInnis, R.; Jurkovic, A.; Scott, I. Environmental characterization of surface runoff from three highway sites in Southern Ontario, Canada. Water Qual. Res. J. Can. 2011, 46, 110–136. [Google Scholar] [CrossRef]
- Gill, L.W.; Ring, P.; Neil, M.P.; Johnston, P.M. Accumulation of heavy metals in a constructed wetland treating road runoff. Ecol. Eng. 2014, 70, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Zhao, R.H. Accumulation and Purification Materials of Urban Rain Water. Ph.D. Dissertation, Tianjin University, Tianjing, China, 2010. [Google Scholar]
- Hilliges, R.; Schriewer, A.; Helmreich, B. A three-stage treatment system for highly polluted urban road runoff. J. Environ. Manag. 2013, 128, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Boogaard, F.C.; Lucke, T.; Giesen, N.; van de Ven, F. Evaluate the infiltration performance of eight Dutch permeable pavements using a new full-scale infiltration testing method. Water 2014, 6, 2070–2083. [Google Scholar] [CrossRef]
- Legret, M.; Colandini, V.; Marc, C.L. Effects of a porous pavement with reservoir structure on the quality of runoff water and soil. Sci. Total Environ. 1996, 189–190, 335–340. [Google Scholar] [CrossRef]
- Fwa, T.F.; Lim, E.; Tan, K.H. Comparison of Permeability and Clogging Characteristics of Porous Asphalt and Pervious Concrete Pavement Materials. Transp. Res. Rec. 2015, 2511, 72–80. [Google Scholar] [CrossRef]
- Hares, R.J.; Ward, N.I. Comparison of the heavy metal content of motorway storm water following discharge into wet bio-filtration and dry detention ponds along the London Orbital (M25) motorway. Sci. Total Environ. 1999, 235, 169–178. [Google Scholar] [CrossRef]
- Selim, A.Q.; El-Midany, A.A.; Ibrahim, S.S. Microscopic evaluation of diatomite for advanced applications: Case study. In Microscopy: Science, Technology, Applications and Education; Méndez-Vilas, A., Díaz, J., Eds.; Formatex Research Center: Badajoz, Spain, 2010; pp. 2174–2181. [Google Scholar]
- State Environmental Protection Administration of China (SEPA). Standard of Environmental Quality for Surface Water; GB 3838-2002; Environmental Science Press: Beijing, China, 2002.
- Wang, Y.; Gao, C.; Yang, S. Research on runoff pollution characteristics and countermeasures at sensitive highway sites. Pol. J. Environ. Stud. 2016, 25, 813–821. [Google Scholar] [CrossRef]
Date of Sampling | Precipitation (mm) | Duration of Rainfall (min) | Duration of Runoff (min) | Duration of Sampling (min) |
---|---|---|---|---|
3 April 2016 | 14.7 | 153 | 143~148 | 60 |
Items | Methods | Referenced Standards |
---|---|---|
SS | Gravimetric method | GB/T11901-89 |
COD | Potassium dichromate method | GB/T11914-89 |
TN | Alkaline potassium persulfate digestion UV spectrophotometric method | HJ 636-2012 |
TP | Ammonium molybdate spectrophotometric method | GB 11893-89 |
Pb | Atomic absorption spectrophotometry method | GB 7475-87 |
Zn | Atomic absorption spectrophotometry method | GB 7475-87 |
Indexes | SS | COD | TN | TP | Zn | Pb |
---|---|---|---|---|---|---|
Reagent | Roadside dust | C6H12O6 | NH4Cl | KH2PO4 | Zn(NO3)2 | Pb(NO3)2 |
Sites | Rainfall Duration (min) | TN (mg/L) | TP (mg/L) | COD (mg/L) | Zn (mg/L) | Pb (mg/L) | SS (mg/L) |
---|---|---|---|---|---|---|---|
Site 1 | 0 | 12.333 | 2.019 | 616 | 7.670 | 1.175 | 496 |
3 | 11.994 | 2.014 | 564 | 6.510 | 1.370 | 711 | |
5 | 10.317 | 1.720 | 560 | 5.395 | 1.645 | 674 | |
10 | 10.217 | 1.593 | 636 | 4.705 | 1.240 | 700 | |
15 | 9.189 | 1.303 | 664 | 4.390 | 0.595 | 633 | |
20 | 9.146 | 1.061 | 692 | 3.735 | 2.065 | 490 | |
30 | 7.095 | 0.806 | 584 | 3.375 | 1.910 | 316 | |
40 | 5.038 | 0.912 | 524 | 2.995 | 0.920 | 139 | |
50 | 5.020 | 0.819 | 716 | 2.640 | 0.520 | 72 | |
60 | 5.021 | 0.906 | 704 | 2.245 | 0.730 | 104 | |
Site 2 | 0 | 5.132 | 1.403 | 540 | 3.370 | 0.540 | 403 |
3 | 4.183 | 1.017 | 380 | 2.870 | 0.550 | 585 | |
5 | 4.095 | 1.010 | 712 | 2.385 | 0.545 | 370 | |
10 | 3.048 | 1.002 | 772 | 1.925 | 0.360 | 217 | |
15 | 3.013 | 0.934 | 744 | 1.255 | 0.320 | 105 | |
20 | 3.037 | 0.709 | 632 | 1.195 | 0.295 | 50 | |
30 | 2.018 | 0.708 | 492 | 0.665 | 0.355 | 67 | |
40 | 2.031 | 0.710 | 776 | 0.230 | 0.380 | 130 | |
50 | 1.048 | 0.805 | 764 | 0.215 | 0.380 | 120 | |
60 | 1.007 | 0.716 | 700 | 0.260 | 0.795 | 71 | |
Site 3 | 0 | 10.561 | 4.034 | 552 | 5.105 | 0.775 | 1018 |
3 | 9.313 | 3.827 | 400 | 4.515 | 0.620 | 853 | |
5 | 8.327 | 3.523 | 696 | 3.870 | 0.610 | 1437 | |
10 | 6.178 | 3.040 | 396 | 3.180 | 0.570 | 858 | |
15 | 6.136 | 2.607 | 408 | 2.005 | 0.335 | 661 | |
20 | 5.327 | 2.019 | 568 | 1.935 | 0.390 | 663 | |
30 | 5.154 | 1.710 | 804 | 1.655 | 0.295 | 309 | |
40 | 5.063 | 1.311 | 576 | 1.310 | 0.245 | 184 | |
50 | 4.106 | 1.017 | 872 | 0.895 | 0.315 | 215 | |
60 | 2.022 | 1.015 | 664 | 0.740 | 0.730 | 11 | |
Site 4 | 0 | 6.304 | 2.129 | 624 | 2.060 | 0.540 | 750 |
3 | 6.135 | 1.718 | 492 | 1.705 | 0.380 | 389 | |
5 | 5.110 | 1.813 | 700 | 1.055 | 0.250 | 380 | |
10 | 4.110 | 1.508 | 752 | 1.000 | 0.235 | 251 | |
15 | 4.028 | 1.004 | 800 | 0.800 | 0.240 | 225 | |
20 | 3.125 | 1.013 | 796 | 0.615 | 0.340 | 220 | |
30 | 3.072 | 0.863 | 760 | 0.265 | 0.230 | 238 | |
40 | 3.153 | 0.906 | 604 | 0.120 | 0.465 | 204 | |
50 | 3.033 | 1.008 | 460 | 0.075 | 0.275 | 172 | |
60 | 1.008 | 0.729 | 692 | 0.050 | 0.485 | 145 | |
Limitation (Grade V) | ≤2 | ≤0.2 | ≤40 | ≤2 | ≤0.1 | <30 |
Items | Fitting Results | R2 | Items | Fitting Results | R2 | ||||
---|---|---|---|---|---|---|---|---|---|
a | b | a | b | ||||||
SS | Site 1 | 1057.20 | 435.25 | 0.95 | Zn | Site 1 | 9.4321 | 5.9133 | 0.99 |
Site 2 | 404.07 | 588.65 | 0.95 | Site 2 | 2.8734 | 4.0392 | 0.94 | ||
Site 3 | 1424.6 | 1054.2 | 0.94 | Site 3 | 5.2462 | 5.3276 | 0.98 | ||
Site 4 | 578.43 | 636.31 | 0.99 | Site 4 | 1.4852 | 2.5092 | 0.92 | ||
Pb | Site 1 | 3.0108 | −0.0563 | 0.96 | TN | Site 1 | 19.384 | 7.7671 | 0.98 |
Site 2 | 0.9459 | 0.1947 | 0.97 | Site 2 | 6.305 | 4.1668 | 0.98 | ||
Site 3 | 0.9987 | 0.5371 | 0.98 | Site 3 | 13.679 | 7.9176 | 0.99 | ||
Site 4 | 0.7169 | 0.1681 | 0.95 | Site 4 | 8.6679 | 4.7657 | 0.99 | ||
COD | Site 1 | 1464.2 | −162.43 | 0.96 | TP | Site 1 | 2.8676 | 1.5756 | 0.99 |
Site 2 | 1572.3 | −381.71 | 0.95 | Site 2 | 1.9779 | 0.7055 | 0.98 | ||
Site 3 | 1382.7l | −321.74 | 0.93 | Site 3 | 5.3052 | 3.5971 | 0.98 | ||
Site 4 | 1628.7 | −246.82 | 0.95 | Site 4 | 2.7355 | 1.5902 | 0.99 |
Purification Materials | Removal Rates (%) | |||||
---|---|---|---|---|---|---|
SS | COD | TN | TP | Zn | Pb | |
Fine sand | 95.1 | 34.7 | 8.6 | 43.1 * | 36.4 | 47.3 |
Zeolite | 96.4 | 48.5 * | 45.7 | 40.3 * | 55.9 * | 56.0 |
Slag | 97.3 * | 45.2 * | 45.3 | 20.8 | 36.4 | 10.8 |
Ceramsite | 94.6 | 40.1 | 27.4 | 20.8 | 73.4 * | 78.7 * |
Diatomite | 88.9 | 42.3 | 50.6 * | 31.9 | 21.9 | 26.0 |
Scoria | 99.5 * | 30.4 | 56.9 * | 15.3 | 34.0 | 84.7 * |
Pollution Situations | A | B | C | D |
---|---|---|---|---|
Combination | Slag + Scoria | Zeolite + Ceramsite | Zeolite + Diatomite | Zeolite + Scoria |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, C.; Kang, A.; Xiao, P.; Mikhailenko, P.; Baaj, H.; Sun, L.; Wu, Z. A Source Pollution Control Measure Based on Spatial-Temporal Distribution Characteristic of the Runoff Pollutants at Urban Pavement Sites. Appl. Sci. 2018, 8, 1802. https://doi.org/10.3390/app8101802
Kou C, Kang A, Xiao P, Mikhailenko P, Baaj H, Sun L, Wu Z. A Source Pollution Control Measure Based on Spatial-Temporal Distribution Characteristic of the Runoff Pollutants at Urban Pavement Sites. Applied Sciences. 2018; 8(10):1802. https://doi.org/10.3390/app8101802
Chicago/Turabian StyleKou, Changjiang, Aihong Kang, Peng Xiao, Peter Mikhailenko, Hassan Baaj, Lu Sun, and Zhengguang Wu. 2018. "A Source Pollution Control Measure Based on Spatial-Temporal Distribution Characteristic of the Runoff Pollutants at Urban Pavement Sites" Applied Sciences 8, no. 10: 1802. https://doi.org/10.3390/app8101802
APA StyleKou, C., Kang, A., Xiao, P., Mikhailenko, P., Baaj, H., Sun, L., & Wu, Z. (2018). A Source Pollution Control Measure Based on Spatial-Temporal Distribution Characteristic of the Runoff Pollutants at Urban Pavement Sites. Applied Sciences, 8(10), 1802. https://doi.org/10.3390/app8101802