Recent Advances in Brillouin Optical Correlation-Domain Reflectometry
Abstract
:Featured Application
Abstract
1. Introduction
2. Basic Principle of BOCDR
3. Various Configurations of BOCDR
4. Development of Slope-Assisted BOCDR
4.1. Principle and Fundamental Operation
4.2. Beyond-Nominal-Resolution Effect
4.3. Detection of Extremely Short Hot Spots
4.4. Other Achievements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agrawal, G.P. Nonlinear Fiber Optics, 4th ed.; Academic Press: San Diego, CA, USA, 1995; pp. 329–367. [Google Scholar]
- Ippen, E.P.; Stolen, R.H. Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett. 1972, 21, 539–541. [Google Scholar] [CrossRef]
- Horiguchi, T.; Kurashima, T.; Tateda, M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photonics Technol. Lett. 1989, 1, 107–109. [Google Scholar] [CrossRef]
- Kurashima, T.; Horiguchi, T.; Tateda, M. Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers. Appl. Opt. 1990, 29, 2219–2222. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, T.; Tateda, M. BOTDA—Nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: Theory. J. Lightw. Technol. 1989, 7, 1170–1176. [Google Scholar] [CrossRef]
- Kurashima, T.; Horiguchi, T.; Izumita, H.; Furukawa, S.; Koyamada, Y. Brillouin optical-fiber time domain reflectometry. IEICE Trans. Commun. 1993, E76-B, 382–390. [Google Scholar]
- Fellay, A.; Thévenaz, L.; Facchini, M.; Niklès, M.; Robert, P. Distributed sensing using stimulated Brillouin scattering: Towards ultimate resolution. In Proceedings of the 12th International Conference on Optical Fiber Sensors (OFS-12), Williamsburg, VA, USA, 28–31 October 1997. [Google Scholar]
- Alahbabi, M.N.; Cho, Y.T.; Newson, T.P. 100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter. Meas. Sci. Technol. 2004, 15, 1544–1547. [Google Scholar] [CrossRef] [Green Version]
- Koyamada, Y.; Sakairi, Y.; Takeuchi, N.; Adachi, S. Novel technique to improve spatial resolution in Brillouin optical time-domain reflectometry. IEEE Photonics Technol. Lett. 2007, 19, 1910–1912. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, C.; Cao, C.; Zhang, X. Enhancing the performance of BOTDR based on the combination of FFT technique and complementary coding. Opt. Express 2017, 25, 3504–3513. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, K.; Kanda, Y.; Fujii, A.; Murai, H. High-speed distributed strain measurement using Brillouin optical time-domain reflectometry based-on self-delayed heterodyne detection. In Proceedings of the 41st European Conference on Optical Communication (ECOC2015), Valencia, Spain, 27 September–1 October 2015. [Google Scholar]
- Jia, X.H.; Rao, Y.J.; Chang, L.; Zhang, C.; Ran, Z.L. Enhanced sensing performance in long distance Brillouin optical time-domain analyzer based on Raman amplification: Theoretical and experimental investigation. J. Lightw. Technol. 2010, 28, 1624–1630. [Google Scholar]
- Zhou, D.; Dong, Y.; Wang, B.; Pang, C.; Ba, D.; Zhang, H.; Lu, Z.; Li, H.; Bao, X. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement. Light Sci. Appl. 2018, 7, 32. [Google Scholar] [CrossRef]
- Kito, C.; Takahashi, H.; Toge, K.; Manabe, T. Dynamic strain measurement of 10-km fiber with frequency-swept pulsed BOTDA. J. Lightw. Technol. 2017, 35, 1738–1743. [Google Scholar] [CrossRef]
- Soto, M.A.; Ramírez, J.A.; Thévenaz, L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration. Nature Commun. 2016, 7, 10870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.; Zhang, H.; Chen, L.; Bao, X. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair. Appl. Opt. 2012, 51, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.K.; Wang, L.; Guo, N.; Tam, H.Y.; Lu, C. Signal processing using artificial neural network for BOTDA sensor system. Opt. Express 2016, 24, 6769–6782. [Google Scholar] [CrossRef] [PubMed]
- Motil, A.; Davidi, R.; Hadar, R.; Tur, M. Mitigating the effects of the gain-dependence of the Brillouin line-shape on dynamic BOTDA sensing methods. Opt. Express 2017, 25, 22206–22218. [Google Scholar] [CrossRef] [PubMed]
- Marini, D.; Iuliano, M.; Bastianini, F.; Bolognini, G. BOTDA sensing employing a modified Brillouin fiber laser probe source. J. Lightw. Technol. 2018, 36, 1131–1137. [Google Scholar] [CrossRef]
- Zhou, D.; Dong, Y.; Wang, B.; Jiang, T.; Ba, D.; Xu, P.; Zhang, H.; Lu, Z.; Li, H. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements. Opt. Express 2017, 25, 1889–1902. [Google Scholar] [CrossRef] [PubMed]
- Garus, D.; Krebber, K.; Schliep, F.; Gogolla, T. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis. Opt. Lett. 1996, 21, 1402–1404. [Google Scholar] [CrossRef] [PubMed]
- Zeni, L.; Catalano, E.; Coscetta, A.; Minardo, A. High-pass filtering for accurate reconstruction of the Brillouin frequency shift profile from Brillouin optical frequency domain analysis data. IEEE Sens. J. 2018, 18, 185–192. [Google Scholar] [CrossRef]
- Kapa, T.; Schreier, A.; Krebber, K. 63 km BOFDA for temperature and strain monitoring. Sensors 2018, 18, 1600. [Google Scholar] [CrossRef] [PubMed]
- Minardo, A.; Bernini, R.; Ruiz-Lombera, R.; Mirapeix, J.; Lopez-Higuera, J.M. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR). Opt. Express 2016, 24, 29994–30001. [Google Scholar] [CrossRef] [PubMed]
- Hotate, K.; Hasegawa, T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—Proposal, experiment and simulation. IEICE Trans. Electron. 2000, E83-C, 405–412. [Google Scholar]
- Song, K.Y.; Kishi, M.; He, Z.; Hotate, K. High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation. Opt. Lett. 2011, 36, 2062–2064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kishi, M.; Hotate, K. 5,000 points/s high-speed random accessibility for dynamic strain measurement at arbitrary multiple points along a fiber by Brillouin optical correlation domain analysis. Appl. Phys. Express 2015, 8, 042501. [Google Scholar] [CrossRef]
- Wang, B.; Fan, X.; Fu, Y.; He, Z. Dynamic strain measurement with kHz-level repetition rate and centimeter-level spatial resolution based on Brillouin optical correlation domain analysis. Opt. Express 2018, 26, 6916–6928. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Jin, C.; Chen, J. Distributed strain sensing based on combination of Brillouin gain and loss effects in Brillouin optical correlation domain analysis. Appl. Phys. Express 2012, 5, 082503. [Google Scholar] [CrossRef]
- Ryu, G.; Kim, G.; Song, K.Y.; Lee, S.B.; Lee, K. Brillouin optical correlation-domain analysis enhanced by time-domain data processing for concurrent interrogation of multiple sensing points. J. Lightw. Technol. 2017, 35, 5311–5316. [Google Scholar] [CrossRef]
- Denisov, A.; Soto, M.A.; Thévenaz, L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: Theoretical analysis and experimental demonstration. Light Sci. Appl. 2016, 5, e16074. [Google Scholar] [CrossRef] [PubMed]
- London, Y.; Antman, Y.; Preter, E.; Levanon, N.; Zadok, A. Brillouin optical correlation domain analysis addressing 440,000 resolution points. J. Lightw.Technol. 2016, 34, 4421–4429. [Google Scholar] [CrossRef]
- López-Gil, A.; Martin-Lopez, S.; Gonzalez-Herraez, M. Phase-measuring time-gated BOCDA. Opt. Lett. 2017, 42, 3924–3927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, M.; Zhang, M.; Liu, Y.; Feng, C.; Wang, Y.; Wang, Y. Chaotic Brillouin optical correlation-domain analysis. Opt. Lett. 2018, 43, 1722–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preter, E.; Ba, D.; London, Y.; Shlomi, O.; Antman, Y.; Zadok, A. High-resolution Brillouin optical correlation domain analysis with no spectral scanning. Opt. Express 2016, 24, 27253–27267. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Zou, W.; He, Z.; Hotate, K. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR). Opt. Express 2008, 16, 12148–12153. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Zou, W.; He, Z.; Hotate, K. Operation of Brillouin optical correlation-domain reflectometry: Theoretical analysis and experimental validation. J. Lightw. Technol. 2010, 28, 3300–3306. [Google Scholar] [CrossRef]
- Mizuno, Y.; He, Z.; Hotate, K. Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry. Opt. Commun. 2010, 283, 2438–2441. [Google Scholar] [CrossRef]
- Mizuno, Y.; Nakamura, K. Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing. Opt. Lett. 2010, 35, 3985–3987. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Hayashi, N.; Nakamura, K. Opto-Mechanical Fiber Optic Sensors, 1st ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 97–135. [Google Scholar]
- Mizuno, Y.; He, Z.; Hotate, K. Dependence of the Brillouin frequency shift on temperature in a tellurite glass fiber and a bismuth-oxide highly-nonlinear fiber. Appl. Phys. Express 2009, 2, 112402. [Google Scholar] [CrossRef]
- Mizuno, Y.; He, Z.; Hotate, K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme. Opt. Express 2009, 17, 9040–9046. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; He, Z.; Hotate, K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme. Opt. Express 2010, 18, 5926–5933. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; He, Z.; Hotate, K. Polarization beat length distribution measurement in single-mode optical fibers with Brillouin optical correlation-domain reflectometry. Appl. Phys. Express 2009, 2, 046502. [Google Scholar] [CrossRef]
- Mizuno, Y.; He, Z.; Hotate, K. Stable entire-length measurement of fiber strain distribution by Brillouin optical correlation-domain reflectometry with polarization scrambling and noise-floor compensation. Appl. Phys. Express 2009, 2, 062403. [Google Scholar] [CrossRef]
- Hayashi, N.; Minakawa, K.; Mizuno, Y.; Nakamura, K. Polarization scrambling in Brillouin optical correlation-domain reflectometry using polymer fibers. Appl. Phys. Express 2015, 8, 062501. [Google Scholar] [CrossRef]
- Mizuno, Y.; He, Z.; Hotate, K. Dependence of the Brillouin frequency shift on temperature in a tellurite glass fiber and a bismuth-oxide highly-nonlinear fiber. Appl. Phys. Express 2009, 2, 112402. [Google Scholar] [CrossRef]
- Hayashi, N.; Mizuno, Y.; Nakamura, K. Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers. J. Lightw. Technol. 2014, 32, 3999–4003. [Google Scholar] [CrossRef]
- Hayashi, N.; Mizuno, Y.; Nakamura, K. Suppression of ghost correlation peak in Brillouin optical correlation-domain reflectometry. Appl. Phys. Express 2014, 7, 112501. [Google Scholar] [CrossRef]
- Hayashi, N.; Mizuno, Y.; Nakamura, K. Simplified configuration of Brillouin optical correlation-domain reflectometry. IEEE Photonics J. 2014, 6, 6802807. [Google Scholar] [CrossRef]
- Hayashi, N.; Mizuno, Y.; Nakamura, K. Alternative implementation of simplified Brillouin optical correlation-domain reflectometry. IEEE Photonics J. 2014, 6, 6803108. [Google Scholar] [CrossRef]
- Hayashi, N.; Mizuno, Y.; Nakamura, K. Simplified Brillouin optical correlation-domain reflectometry using polymer optical fiber. IEEE Photonics J. 2015, 7, 6800407. [Google Scholar] [CrossRef]
- Manotham, S.; Kishi, M.; He, Z.; Hotate, K. 1-cm spatial resolution with large dynamic range in strain distributed sensing by Brillouin optical correlation domain reflectometry based on intensity modulation. Proc. SPIE 2012, 8351, 835136. [Google Scholar]
- Yao, Y.; Kishi, M.; Hotate, K. Brillouin optical correlation domain reflectometry with lock-in detection scheme. Appl. Phys. Express 2016, 9, 072501. [Google Scholar] [CrossRef]
- Mizuno, Y.; Zou, W.; He, Z.; Hotate, K. One-end-access high-speed distributed strain measurement with 13-mm spatial resolution based on Brillouin optical correlation-domain reflectometry. IEEE Photonics Technol. Lett. 2009, 21, 474–476. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hayashi, N.; Fukuda, H.; Song, K.Y.; Nakamura, K. Ultrahigh-speed distributed Brillouin reflectometry. Light Sci. Appl. 2016, 5, e16184. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, Y.; Hayashi, N.; Fukuda, H.; Nakamura, K. Single-end-access distributed strain sensing with wide dynamic range using higher-speed Brillouin optical correlation-domain reflectometry. Jpn. J. Appl. Phys. 2017, 56, 072501. [Google Scholar] [CrossRef]
- Mizuno, Y.; Hayashi, N.; Fukuda, H.; Nakamura, K. Phase-detected Brillouin optical correlation-domain reflectometry. Opt. Rev. 2018, 25, 473–485. [Google Scholar] [CrossRef]
- Lee, H.; Hayashi, N.; Mizuno, Y.; Nakamura, K. Slope-assisted Brillouin optical correlation-domain reflectometry: Proof of concept. IEEE Photonics J. 2016, 8, 6802807. [Google Scholar] [CrossRef]
- Lee, H.; Hayashi, N.; Mizuno, Y.; Nakamura, K. Operation of slope-assisted Brillouin optical correlation-domain reflectometry: Comparison of system output with actual frequency shift distribution. Opt. Express 2016, 24, 29190–29197. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Mizuno, Y.; Nakamura, K. Detection of 2-mm-long strained section in silica fiber using slope-assisted Brillouin optical correlation-domain reflectometry. Jpn. J. Appl. Phys. 2018, 57, 020303. [Google Scholar] [CrossRef]
- Peled, Y.; Motil, A.; Yaron, L.; Tur, M. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile. Opt. Express 2011, 19, 19845–19854. [Google Scholar] [CrossRef] [PubMed]
- Tu, X.; Luo, H.; Sun, Q.; Hu, X.; Meng, Z. Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers. J. Opt. 2015, 17, 105503. [Google Scholar] [CrossRef]
- Minardo, A.; Coscetta, A.; Bernini, R.; Zeni, L. Heterodyne slope-assisted Brillouin optical time-domain analysis for dynamic strain measurements. J. Opt. 2016, 18, 025606. [Google Scholar] [CrossRef]
- Song, K.Y.; He, Z.; Hotate, K. Effects of intensity modulation of light source on Brillouin optical correlation domain analysis. J. Lightw. Technol. 2007, 25, 1238–1246. [Google Scholar] [CrossRef]
- Song, K.Y.; He, Z.; Hotate, K. Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis. Opt. Lett. 2006, 31, 2526–2528. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Mizuno, Y.; Nakamura, K. Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers. J. Lightw. Technol. 2014, 32, 3999–4003. [Google Scholar] [CrossRef]
- Koike, Y.; Asai, M. The future of plastic optical fiber. NPG Asia Mater. 2009, 1, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Nakamura, K. Experimental study of Brillouin scattering in perfluorinated polymer optical fiber at telecommunication wavelength. Appl. Phys. Lett. 2010, 97, 021103. [Google Scholar] [CrossRef]
- Lee, H.; Mizuno, Y.; Nakamura, K. Measurement sensitivity dependencies on incident power and spatial resolution in slope-assisted Brillouin optical correlation-domain reflectometry. Sens. Actuat. A Phys. 2017, 268, 68–71. [Google Scholar] [CrossRef]
- Lee, H.; Hayashi, N.; Mizuno, Y.; Nakamura, K. Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss. J. Lightw. Technol. 2017, 35, 2306–2310. [Google Scholar] [CrossRef]
- Lee, H.; Ma, T.; Mizuno, Y.; Nakamura, K. Bending-loss-independent operation of slope-assisted Brillouin optical correlation-domain reflectometry. Sci. Rep. 2018, 8, 7844. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ochi, Y.; Matsui, T.; Matsumoto, Y.; Tanaka, Y.; Nakamura, H.; Mizuno, Y.; Nakamura, K. Distributed strain measurement and possible breakage detection of optical-fiber-embedded composite structure using slope-assisted Brillouin optical correlation-domain reflectometry. Appl. Phys. Express 2018, 11, 072501. [Google Scholar] [CrossRef]
- Lee, H.; Mizuno, Y.; Nakamura, K. Highly sensitive slope-assisted BOCDR utilizing polarization-maintaining fiber. In Proceedings of the 23rd OptoElectronics and Communications Conference (OECC2018), Jeju, Korea, 2–6 July 2018. [Google Scholar]
- Alahbabi, M.N.; Cho, Y.T.; Newson, T.P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering. Opt. Lett. 2005, 30, 1276–1278. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; He, Z.; Hotate, K. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. Opt. Express 2009, 17, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Mizuno, Y.; Nakamura, K. Discriminative strain and temperature measurement using Brillouin scattering and fluorescence in erbium-doped optical fiber. Opt. Express 2014, 22, 24706–24712. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wang, Y.; Fang, J.; Li, M.J.; Kim, B.Y.; Shieh, W. Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination. Opt. Lett. 2015, 40, 1488–1491. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Ip, E.; Pan, Z.; Wang, T. Single-end simultaneous temperature and strain sensing techniques based on Brillouin optical time domain reflectometry in few-mode fibers. Opt. Express 2015, 23, 9024–9039. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Dang, Y.; Tang, M.; Duan, L.; Wang, M.; Wu, H.; Fu, S.; Tong, W.; Shum, P.P.; Liu, D. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber. Opt. Express 2016, 24, 25111–25118. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Sun, J.; Feng, D. Simultaneous measurement of strain and temperature based on hybrid EDF/Brillouin laser. Opt. Express 2016, 24, 11475–11482. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ren, M.; Lu, Y.; Lu, P.; Lu, P.; Bao, X.; Wang, L.; Messaddeq, Y.; LaRochelle, S. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber. Opt. Lett. 2016, 41, 1138–1141. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Mizuno, Y.; Nakamura, K.; Set, S.Y.; Yamashita, S. Experimental study on depolarized GAWBS spectrum for optomechanical sensing of liquids outside standard fibers. Opt. Express 2017, 25, 2239–2244. [Google Scholar] [CrossRef] [PubMed]
- Minardo, A.; Coscetta, A.; Catalano, E.; Zeni, L. Simultaneous strain and temperature measurements by dual wavelength Brillouin sensors. IEEE Sens. J. 2017, 17, 3714–3719. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizuno, Y.; Lee, H.; Nakamura, K. Recent Advances in Brillouin Optical Correlation-Domain Reflectometry. Appl. Sci. 2018, 8, 1845. https://doi.org/10.3390/app8101845
Mizuno Y, Lee H, Nakamura K. Recent Advances in Brillouin Optical Correlation-Domain Reflectometry. Applied Sciences. 2018; 8(10):1845. https://doi.org/10.3390/app8101845
Chicago/Turabian StyleMizuno, Yosuke, Heeyoung Lee, and Kentaro Nakamura. 2018. "Recent Advances in Brillouin Optical Correlation-Domain Reflectometry" Applied Sciences 8, no. 10: 1845. https://doi.org/10.3390/app8101845
APA StyleMizuno, Y., Lee, H., & Nakamura, K. (2018). Recent Advances in Brillouin Optical Correlation-Domain Reflectometry. Applied Sciences, 8(10), 1845. https://doi.org/10.3390/app8101845