Different Soil Particle-Size Classification Systems for Calculating Volume Fractal Dimension—A Case Study of Pinus sylvestris var. Mongolica in Mu Us Sandy Land, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Situations of Study Region
2.2. Sample Plots Investigation
2.3. Soil Fractal Model Descriptions
2.4. Particle-Size Scales and Terminology
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Soil PSD and Ds under Different PSC Systems
3.2. The Relations between Ds and PSD of Sample Contents under Different PSC Systems
3.3. Relationships between Soil Fractal Dimensions under Different PSC Systems
3.4. Relationships between Forest Densities and Soil Fractal Dimensions under Different PSC Systems
3.5. Sensitivities of Calculation of Soil Fractal Dimensions to Different Soil PSC
4. Discussion
5. Conclusions
- (1)
- The major soil particle-size was distributed within the sand classification, which accounted for more than 90% of the total volume. Clay and silt particle contents were much less prevalent. Blott & Pye (2012) PSC system had sufficient subdivisions of soil fractions classes, while other schemes did not provide sufficient basis for description and comparison of soil PSD. The order of volume fractal dimensions was USDA (1993) > ISO14688 (2002) > ISSS (1929) > Katschinski (1957) > China (1987) > Blott & Pye (2012) PSC systems.
- (2)
- There were significant positive correlations between Ds and clay and silt fractions (R2 = 0.721–0.964 and 0.740–0.987, p < 0.01), and significant negative correlations between Ds and sand fraction (R2 = 0.755–0.983, p < 0.01) under six PSC systems.
- (3)
- There were significant positive correlations among PSC systems with correlation coefficients ranging from 0.977 to 0.998 (p < 0.01), which also indicated they have close connection.
- (4)
- Ds which were calculated by six PSC systems were sensitive to the desertification combating processes like MPPs establishment and forest densities by characterizing soil PSD and its variations. Compare to the other PSC systems, Ds calculated by Katschinski (1957) PSC systems had relatively weaker correlation with forest densities.
- (5)
- The variation of Lg (V/VT) and Lg (Ri/Rmax) curve under different PSC systems indicated that refining clay and sand scales could increase D values, while refining silt scales could reduce D values.
- (6)
- Taking soil PSD data, D values, and the observed correlations into consideration, USDA (1993) and Blott & Pye (2012) PSC systems should be highly recommend optional PSC systems for calculating volume fractal dimensions of PSD. For the former PSC system, Ds had the closest relationship with soil fractions, and latter PSC system had the most information of subdivision of soil fractions.
Author Contributions
Funding
Conflicts of Interest
References
- Xia, D.; Deng, Y.; Wang, S.; Ding, S.; Cai, C. Fractal features of soil particle-size distribution of different weathering profiles of the collapsing gullies in the hilly granitic region, south China. Nat. Hazards 2015, 79, 455–478. [Google Scholar] [CrossRef]
- Laborczi, A.; Szatmári, G.; Takács, K.; Pásztor, L. Mapping of topsoil texture in hungary using classification trees. J. Maps 2016, 12, 999–1009. [Google Scholar] [CrossRef]
- Giménez, D.; Perfect, E.; Rawls, W.J.; Pachepsky, Y. Fractal models for predicting soil hydraulic properties: A review. Eng. Geol. 1997, 48, 161–183. [Google Scholar] [CrossRef]
- Montero, E.S. Rényi dimensions analysis of soil particle-size distributions. Ecol. Model. 2005, 182, 305–315. [Google Scholar] [CrossRef]
- Tyler, S.W.; Wheatcraft, S.W. Fractal scaling of soil particle-size distributions: Analysis and limitations. Soil Sci. Soc. Am. J. 1992, 56, 362–369. [Google Scholar] [CrossRef]
- Erguler, Z.A. A quantitative method of describing grain size distribution of soils and some examples for its applications. Bull. Eng. Geol. Environ. 2016, 75, 807–819. [Google Scholar] [CrossRef]
- Jin, Z.; Dong, Y.S.; Qi, Y.C.; Liu, W.G.; An, Z.S. Characterizing variations in soil particle-size distribution along a grass-desert shrub transition in the ordos plateau of inner mongolia, china. Land Degrad. Dev. 2013, 24, 141–146. [Google Scholar] [CrossRef]
- Wang, X.D.; Li, M.H.; Liu, S.Z.; Liu, G.C. Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China. Geoderma 2006, 134, 56–61. [Google Scholar] [CrossRef]
- Wang, D.; Fu, B.J.; Zhao, W.W.; Hu, H.F.; Wang, Y.F. Multifractal characteristics of soil particle size distribution under different land-use types on the loess plateau, china. Catena 2008, 72, 29–36. [Google Scholar] [CrossRef]
- Gui, D.W.; Lei, J.Q.; Zeng, F.J.; Mu, G.J.; Zhu, J.T.; Wang, H.; Zhang, Q. Characterizing variations in soil particle size distribution in oasis farmlands: A case study of the Cele Oasis. Math. Comput. Model. 2010, 51, 1306–1311. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Boast, C.W.; Bullock, D.G. Multifractal analysis of soil spatial variability. Agron. J. 1999, 91, 1033–1041. [Google Scholar] [CrossRef]
- Ahmadi, A.; Neyshabouri, M.R.; Rouhipour, H.; Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 2011, 400, 305–311. [Google Scholar] [CrossRef]
- Filgueira, R.R.; Pachepsky, Y.A.; Fournier, L.L.; Sarli, G.O.; Aragon, A. Comparison of fractal dimensions estimated from aggregate mass-size distribution and water retention scaling. Soil Sci. 1999, 164, 217–223. [Google Scholar] [CrossRef]
- Bashkin, M.; Stohlgren, T.J.; Otsuki, Y.; Lee, M.; Evangelista, P.; Belnap, J. Soil characteristics and plant exotic species invasions in the Grand Staircase-Escalante National Monument, Utah, USA. Appl. Soil Ecol. 2003, 22, 67–77. [Google Scholar] [CrossRef]
- Skaggs, T.H.; Arya, L.M.; Shouse, P.J.; Mohanty, B.P. Estimating particle-size distribution from limited soil texture data. Soil Sci. Soc. Am. J. 2001, 65, 1038–1044. [Google Scholar] [CrossRef]
- Su, Y.Z.; Zhao, H.L.; Zhao, W.Z.; Zhang, T.H. Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma 2004, 122, 43–49. [Google Scholar] [CrossRef]
- Filgueira, R.R.; Fournier, L.L.; Cerisola, C.I.; Gelati, P.; Garcia, M.G. Particle-size distribution in soils: A critical study of the fractal model validation. Geoderma 2006, 134, 327–334. [Google Scholar] [CrossRef]
- Gao, G.L.; Ding, G.D.; Wu, B.; Zhang, Y.Q.; Qin, S.G.; Zhao, Y.Y.; Bao, Y.F.; Liu, Y.D.; Wan, L.; Deng, J.F. Fractal scaling of particle size distribution and relationships with topsoil properties affected by biological soil crusts. PLoS ONE 2014, 9, e88559. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Li, J.; Deng, G.; Zhu, H.; Zhang, R. Fractal scaling of particle-size distribution and associations with soil properties of Mongolian pine plantations in the Mu Us Desert, China. Sci. Rep. 2017, 7, 6742. [Google Scholar] [CrossRef] [PubMed]
- Perfect, E.; Kay, B.D. Fractal theory applied to soil aggregation. Soil Sci. Soc. Am. J. 1991, 55, 1552–1558. [Google Scholar] [CrossRef]
- Rasiah, V.; Kay, B.D.; Perfect, E. New mass-based model for estimating fractal dimensions of soil aggregates. Soil Sci. Soc. Am. J. 1993, 57, 891–895. [Google Scholar] [CrossRef]
- Pachepsky, Y.A.; Polubesova, T.A.; Hajnos, M.; Sokolowska, Z.; Józefaciuk, G. Fractal parameters of pore surface area as influenced by simulated soil degradation. Soil Sci. Soc. Am. J. 1995, 59, 68–75. [Google Scholar] [CrossRef]
- Pachepsky, Y.; Yakovchenko, V.; Rabenhorst, M.C.; Pooley, C.; Sikora, L.J. Fractal parameters of pore surfaces as derived from micromorphological data: Effect of long-term management practices. Geoderma 1996, 74. [Google Scholar] [CrossRef]
- Posadas, A.N.D.; Giménez, D.; Quiroz, R.; Protz, R. Multifractal characterization of soil pore spatial distributions. Soil Sci. Soc. Am. J. 2003, 67, 1361–1369. [Google Scholar] [CrossRef]
- Bird, N.; Díaz, M.C.; Saa, A.; Tarquis, A.M. Fractal and multifractal analysis of porescale images of soil. J. Hydrol. 2006, 322, 211–219. [Google Scholar] [CrossRef]
- Jia, X.H.; Li, X.R.; Zhang, J.G.; Zhang, Z.S. Analysis of spatial variability of the fractal dimension of soil particle size in Ammopiptanthus mongolicus’ desert habitat. Environ. Geol. 2009, 58, 953–962. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. The australian soil texture boomerang: A comparison of the Australian and USDA/FAO soil particle-size classification systems. Aust. J. Soil Res. 2001, 39, 1443–1451. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedure. Sedimentology 2012, 59, 2071–2096. [Google Scholar] [CrossRef]
- Krasilnikov, P.; Martí, J.-J.I.; Arnold, R.; Shoba, S. Soil Terminology, Correlation, and Classification, 1st ed.; Earthscan: London, UK, 2009; pp. 47–328. ISBN 978-1-84407-683-3. [Google Scholar]
- Wahren, F.T.; Tarasiuk, M.; Mykhnovych, A.; Kit, M.; Feger, K.H.; Schwärzel, K. Estimation of spatially distributed soil information: Dealing with data shortages in the Western Bug Basin, Ukraine. Environ. Earth Sci. 2012, 65, 1501–1510. [Google Scholar] [CrossRef]
- Gao, G.L.; Ding, G.D.; Zhao, Y.Y.; Wu, B.; Zhang, Y.Q.; Guo, J.B.; Qin, S.G.; Bao, Y.F.; Yu, M.H.; Liu, Y.D. Characterization of soil particle size distribution with a fractal model in the desertified regions of Northern China. Acta Geophys. 2016, 61, 1–14. [Google Scholar] [CrossRef]
- Lobe, I.; Amelung, W.A.; Preez, C.C.D. Losses of carbon and nitrogen with prolonged arable cropping from sandy soils of the South African Highveld. Eur. J. Soil Sci. 2001, 52, 93–101. [Google Scholar] [CrossRef]
- Li, H.; Yang, X. Temperate dryland vegetation changes under a warming climate and strong human intervention—With a particular reference to the district Xilin Gol, Inner Mongolia, China. Catena 2014, 119, 9–20. [Google Scholar] [CrossRef]
- Zhong, W.; Yue, F.; Ciancio, A. Fractal behavior of particle size distribution in the rare earth tailings crushing process under high stress condition. Appl. Sci. 2018, 8, 1058. [Google Scholar] [CrossRef]
- Yu, J.; Lv, X.; Bin, M.; Wu, H.; Du, S.; Zhou, M.; Yang, Y.; Han, G. Fractal features of soil particle size distribution in newly formed wetlands in the Yellow River Delta. Sci. Rep. 2015, 5, 10540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.C.; Li, Z.B.; Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan river, China. Catena 2013, 101, 17–23. [Google Scholar] [CrossRef]
- Liu, S.; Pan, Z.; Cheng, X. A Novel Fast Fractal image compression method based on distance clustering in high dimensional sphere surface. Fractals 2017, 25, 1740004. [Google Scholar] [CrossRef]
- Kabala, C.; Charzynski, P.; Świtoniak, M. Correlation between the polish soil classification (2011) and international soil classification system world reference base for soil resources (2015). Soil Sci. Ann. J. 2016, 67, 88–100. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, X.; Fu, W. Numeric characteristics of generalized M-set with its asymptote. Appl. Math. Comput. 2014, 243, 767–774. [Google Scholar] [CrossRef]
- Zhao, S.W.; Jing, S.U.; Y, H.Y.; Liu, N.N.; Wu, J.S.; Shangguan, Z.P. A fractal method of estimating soil structure changes under different vegetations on Ziwuling mountains of the Loess Plateau, China. Agric. Sci. China 2006, 5, 530–538. [Google Scholar] [CrossRef]
- Perfect, E.; Kay, B.D. Applications of fractals in soil and tillage research: A review. Soil Tillage Res. 1995, 36. [Google Scholar] [CrossRef]
- Liu, S.; Fu, W.; He, L.; Zhou, J.; Ma, M. Distribution of primary additional errors in fractal encoding method. Multimed. Tools Appl. 2017, 76, 5787–5802. [Google Scholar] [CrossRef]
- Millán, H.; González-Posada, M.; Aguilar, M.; Domı́nguez, J.; Céspedes, L. On the fractal scaling of soil data. Particle-size distributions. Geoderma 2003, 117, 117–128. [Google Scholar] [CrossRef]
- Perfect, E.; Rasiah, V.; Kay, B.D. On the relation between number-size distributions and the fractal dimension of aggregates. Soil Sci. Soc. Am. J. 1993, 56, 555–565. [Google Scholar]
- Liu, X.; Zhang, G.C.; Heathman, G.C.; Wang, Y.Q.; Huang, C.H. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma 2009, 154, 123–130. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, X.; Lan, C.; Fu, W.; Zhou, J.; Li, Q.; Gao, G. Fractal property of generalized M-set with rational number exponent. Appl. Math. Comput. 2013, 220, 668–675. [Google Scholar] [CrossRef]
- Magette, W.L.; Brinsfield, R.B.; Palmer, R.E.; Wood, J.D. Nutrient and sediment removal by vegetated filter strips. Trans. ASAE 1989, 32, 663–667. [Google Scholar] [CrossRef]
- Dai, Y.; Shangguan, W.; Duan, Q.; Liu, B.; Fu, S.; Niu, G. Development of a china dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. J. Hydrometeorol. 2013, 14, 869–887. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Garcíagutiérrez, C.; Yuan, H. Particle-size distribution models for the conversion of Chinese data to FAO/USDA system. Sci. World J. 2014. [Google Scholar] [CrossRef] [PubMed]
Plot Number | Forest Density (trees·ha–1) | Tree Height (H, m) | Diameter at Breast Height (DBH, cm) | H/DBH | Canopy Density (%) | Canopy Size (m) |
---|---|---|---|---|---|---|
PI | 2700 | 9.79 | 11.29 | 0.87 | 90 | 1.99 |
PII | 2200 | 8.89 | 13.00 | 0.68 | 80 | 3.12 |
PIII | 2050 | 10.35 | 13.65 | 0.76 | 76 | 2.50 |
PIV | 1800 | 10.28 | 16.10 | 0.64 | 65 | 5.28 |
PV | 1500 | 10.62 | 14.51 | 0.73 | 50 | 2.49 |
PVI | 1400 | 8.30 | 13.18 | 0.63 | 45 | 2.68 |
PVII | 1300 | 10.16 | 15.17 | 0.67 | 70 | 4.07 |
PVIII | 1250 | 12.06 | 19.04 | 0.63 | 75 | 4.06 |
PIX | 900 | 10.26 | 16.67 | 0.62 | 65 | 4.19 |
PSC Systems | China (1987) | Katschinski (1957) | USDA (1993) | ISSS (1929) | ISO14688 (2002) | Blott & Pye (2012) |
---|---|---|---|---|---|---|
China (1987) | 1 | 0.993 ** | 0.983 ** | 0.993 ** | 0.998 ** | 0.998 ** |
Katschinski (1957) | 0.993 ** | 1 | 0.968 ** | 0.977 ** | 0.991 ** | 0.997 ** |
USDA (1993) | 0.983 ** | 0.968 ** | 1 | 0.991 ** | 0.985 ** | 0.979 ** |
ISSS (1929) | 0.993 ** | 0.977 ** | 0.991 ** | 1 | 0.995 ** | 0.988 ** |
ISO14688 (2002) | 0.998 ** | 0.991 ** | 0.985 ** | 0.995 ** | 1 | 0.997 ** |
Blott & Pye (2012) | 0.998 ** | 0.997 ** | 0.979 ** | 0.988 ** | 0.997 ** | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Ma, C.; Yu, H. Different Soil Particle-Size Classification Systems for Calculating Volume Fractal Dimension—A Case Study of Pinus sylvestris var. Mongolica in Mu Us Sandy Land, China. Appl. Sci. 2018, 8, 1872. https://doi.org/10.3390/app8101872
Deng J, Ma C, Yu H. Different Soil Particle-Size Classification Systems for Calculating Volume Fractal Dimension—A Case Study of Pinus sylvestris var. Mongolica in Mu Us Sandy Land, China. Applied Sciences. 2018; 8(10):1872. https://doi.org/10.3390/app8101872
Chicago/Turabian StyleDeng, Jifeng, Chengzhong Ma, and Hongzhou Yu. 2018. "Different Soil Particle-Size Classification Systems for Calculating Volume Fractal Dimension—A Case Study of Pinus sylvestris var. Mongolica in Mu Us Sandy Land, China" Applied Sciences 8, no. 10: 1872. https://doi.org/10.3390/app8101872
APA StyleDeng, J., Ma, C., & Yu, H. (2018). Different Soil Particle-Size Classification Systems for Calculating Volume Fractal Dimension—A Case Study of Pinus sylvestris var. Mongolica in Mu Us Sandy Land, China. Applied Sciences, 8(10), 1872. https://doi.org/10.3390/app8101872