Electronic and Magnetic Properties of Bulk and Monolayer CrSi2: A First-Principle Study
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Phonon Dispersion Curve
3.2. Electronic Structure
3.3. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.S.; Liang, T.; Shi, M.M.; Chen, H.Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef] [PubMed]
- Lew Yan Voon, L.C.; Guzmán-Verri, G.G. Is silicone the next graphence. MRS Bull. 2014, 39, 366–373. [Google Scholar] [CrossRef]
- Kara, A.; Enriquez, H.; Seitsonen, A.P.; Lew Yan Voon, L.C.; Vizzini, S.; Aufray, B.; Oughaddou, H. A review on silicone-new candidate for electronics. Sur. Sci. Rep. 2012, 67, 1–18. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron nitride nanotubes and nanosheets. ACS Nano 2010, 4, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Pakdel, A.; Zhi, C.; Bando, Y.; Golberg, D. Low-dimensional boron nitride nanomaterials. Mat. Today 2012, 15, 256–265. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenidenanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A. Progress, challenges, and opportunities in two-dimensional materials beyond grapheme. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef] [PubMed]
- Han, N.N.; Liu, H.S.; Zhao, J.J. Novel magnetic monolayers of transition metal silicide. J. Superconduct. Nov. Magn. 2015, 28, 1755–1758. [Google Scholar] [CrossRef]
- Chen, S.B.; Chen, Y.; Yan, W.J.; Zhou, S.Y.; Xiong, W.; Yao, X.X.; Qin, X.M. Magnetism and optical property of Mn-doped monolayer CrSi2 by first-principle study. J. Superconduct. Nov. Magn. 2017. [Google Scholar] [CrossRef]
- Chen, S.B.; Zhou, S.Y.; Yan, W.J.; Chen, Y.; Qin, X.M.; Xiong, W. Effect of Fe and Ti Substitution Doping on Magnetic Property of Monolayer CrSi2: A first-principle investigation. J. Superconduct. Nov. Magn. 2018. [Google Scholar] [CrossRef]
- Han, W.; Kawakami, R.K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 59, 794–807. [Google Scholar] [CrossRef] [PubMed]
- Maassen, J.; Ji, W.; Guo, H. Graphene spintronics: The role of ferromagnetic electrodes. Nano Lett. 2011, 11, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Fuh, H.R.; Chang, K.W.; Hung, S.H.; Jeng, H.T. Two-dimensional magnetic semiconductors based on transition-metal dichalcogenides VX2 (X=S, Se, Te) and similar layered compounds VI2 and Co(OH)2. IEEE Magn. Lett. 2017, 8, 3101405. [Google Scholar] [CrossRef]
- Das Sarma, S.; Adam, S.; Hwang, E.H.; Rossi, E. Electronic transport in two dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470. [Google Scholar] [CrossRef]
- Parkin, S.; Yang, S.H. Memory on the racetrack. Nat. Nanotechnol. 2015, 10, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen M Chhowalla, M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 2012, 6, 7311–7317. [Google Scholar] [CrossRef] [PubMed]
- Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D.; Li, Y. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, L.M.; Lau, W.M. Dimension-dependent phase transition and magnetic properties of VS2. J. Mater. Chem. A 2013, 1, 10821–10828. [Google Scholar] [CrossRef]
- Abdul Wasey, A.H.M.; Soubhik, C.; Das, G.P. Quantum size effects in layered VX2 (X=S, Se) materials: Manifestation of metal to semimetal or semiconductor transition. J. Appl. Phys. 2015, 117, 064313. [Google Scholar] [CrossRef]
- Tan, C.L.; Sun, D.; Tian, X.H.; Huang, Y.W. First-principles investigation of phase stability, electronic structure and optical properties of MgZnO monolayer. Materials 2016, 9, 877. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.D.; Bai, L.W.; Yang, C.G.; Fan, K.Q.; Xie, Y.; Lin, M.L. The electronic properties of O-doped pure and sulfur vacancy-defect monolayer WS2: A first-principles study. Materials 2018, 11, 218. [Google Scholar] [CrossRef] [PubMed]
- Krijn, M.P.C.M.; Eppenga, R. First-principles electronic structure and optical properties of CrSi2. Phys. Rev. B 1991, 44, 9042–9044. [Google Scholar] [CrossRef]
- Mattheiss, L.F. Electronic structure of CrSi2 and related refractory disilicides. Phys. Rev. B 1991, 43, 12549–12555. [Google Scholar] [CrossRef]
- Dasgupta, T.; Etourneau, J.; Chevalier, B.; Matar, S.F.; Umarji, A.M. Structural, thermal, and electrical properties of CrSi2. J. Appl. Phys. 2008, 103, 113516. [Google Scholar] [CrossRef]
- Singh, D.J.; Parker, D. Itinerant magnetism in doped semiconducting β-FeSi2 and CrSi2. Sci. Rep. 2013, 3, 3517. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.; Singh, D.J. Very heavily electron-doped CrSi2 as a high performance high-temperature thermoelectric material. New J. Phys. 2012, 14, 033045. [Google Scholar] [CrossRef]
- Dzade N, Y.; Obodo, K.O.; Adjokatse, S.K. Silicene and transition metal based materials: Prediction of a two dimensional piezomagnet. J. Phys. Condens. Matter. 2010, 22, 375502–375509. [Google Scholar] [CrossRef] [PubMed]
- Viet Q, B.; Pham, T.T.; Nguyen, H.V.S.; Le, H.M. Transition metal (Fe and Cr) adsorptions on buckled and planar silicene monolayers: A density functional theory investigation. J. Phys. Chem. C 2013, 117, 23364–23371. [Google Scholar]
- Wang, X.Q.; Li, H.D.; Wang, J.T. Induced ferromagnetism in one-side semihydrogenated silicene and germanene. Phys. Chem. Chem. Phys. 2012, 14, 3031–3036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.W.; Yan, S.S. First-principles study of ferromagnetism in two-dimensional silicene with Hydrogenation. J. Phys. Chem. C 2012, 116, 4163–4166. [Google Scholar] [CrossRef]
- Kaloni, T.P.; Gangopadhyay, S.; Singh, N.; Jones, B. Electronic properties of Mn-decorated silicene on hexagonal boron nitride. Phys. Rev. B 2013, 88, 235418. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.N.; Gao, K.Y.; Liu, B.X. Formation of n-type CrSi2 semiconductor layers on Si by high-current Cr ion implantation. J. Phys. D Appl. Phys. 2000, 33, L49–L52. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias TA Joannopoulos, J.D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1064–1096. [Google Scholar] [CrossRef]
- Clark, S.J. First principles methods using CASTEP. Z. Kristall. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Zeng, Z.Y.; Yin, Z.Y.; Huang, X.; Li, H.; He, Q.Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093–11097. [Google Scholar] [CrossRef] [PubMed]
- Hermet, P.; Khalil, M.; Viennois, R.; Beaudhuin, M.; Bourgogne, D.; Ravot, D. Revisited phonon assignment and electromechanical properties of chromium disilicide. RSC Adv. 2015, 5, 19106–19116. [Google Scholar] [CrossRef]
- Huang L, F.; Rondinelli, J.M. Stable MoSi2 nanofilms with controllable and high metallicity. Phys. Rev. Mater. 2017, 1, 063001-1–063001-6. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, J.L. Structural, electronic, and magnetic properties of TMZn11O12 and TM2Zn10O12 clusters (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). Chem. Phys. Lett. 2009, 474, 336–341. [Google Scholar] [CrossRef]
- Li, H.; Qi, X.; Wu, J.; Zeng, Z.; Wei, J.; Zhang, H. Investigation of MoS2 and graphene nanosheets by magnetic force microscopy. ACS Nano 2013, 7, 2842–2849. [Google Scholar] [CrossRef] [PubMed]
- Tongay, S.; Varnoosfaderani, S.S.; Appleton, B.R.; Wu, J.Q.; Hebard, A.F. Magnetic properties of MoS2: Existence of ferromagnetism. Appl. Phys. Lett. 2012, 101, 123105. [Google Scholar] [CrossRef]
- Li, X.M.; Tao, L.; Chen, Z.F.; Fang, H.; Li, X.S.; Wang, X.R.; Xu, J.B.; Zhu, H.W. Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 2017, 4, 021306. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Chen, F. Ion beam modification of two-dimensional materials: Characterization, properties, and applications. Appl. Phys. Rev. 2017, 4, 011103. [Google Scholar] [CrossRef]
Total Energy of System (ev) | Band Length of cr-si of Intralayer (å) | Band Gap (eV) | Lattice Parameter (Å) | ||||
---|---|---|---|---|---|---|---|
bulk CrSi2 | 4 × 10−4 | 0 | 0 | −8050.32 | 2.47, 2.52,2.55 | 0.376 | a = 4.4276 c = 6.3681 |
0 c | 0 c | 0 c | -- | 2.47 a, 2.55 a, 3.06 a | 0.35 a, 0.21 d | a = 4.42 a, 4.43 d c = 6.349 a, 6.36 d | |
monolayer CrSi2 | 3.68 | 4.11 | −0.21 | −24118.24 | 2.55 | 0 | a = 4.4276 c = 15 |
3.6 b | 4.15 c | -- | -- | 2.56 b | 0 c | a = 3.93968 e c = 16.49899 e |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Chen, Y.; Yan, W.; Zhou, S.; Qin, X.; Xiong, W.; Liu, L. Electronic and Magnetic Properties of Bulk and Monolayer CrSi2: A First-Principle Study. Appl. Sci. 2018, 8, 1885. https://doi.org/10.3390/app8101885
Chen S, Chen Y, Yan W, Zhou S, Qin X, Xiong W, Liu L. Electronic and Magnetic Properties of Bulk and Monolayer CrSi2: A First-Principle Study. Applied Sciences. 2018; 8(10):1885. https://doi.org/10.3390/app8101885
Chicago/Turabian StyleChen, Shaobo, Ying Chen, Wanjun Yan, Shiyun Zhou, Xinmao Qin, Wen Xiong, and Li Liu. 2018. "Electronic and Magnetic Properties of Bulk and Monolayer CrSi2: A First-Principle Study" Applied Sciences 8, no. 10: 1885. https://doi.org/10.3390/app8101885
APA StyleChen, S., Chen, Y., Yan, W., Zhou, S., Qin, X., Xiong, W., & Liu, L. (2018). Electronic and Magnetic Properties of Bulk and Monolayer CrSi2: A First-Principle Study. Applied Sciences, 8(10), 1885. https://doi.org/10.3390/app8101885