Hybrid Fibres as Shear Reinforcement in High-Performance Concrete Beams with and without Openings
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials
2.2. Beams Dimensions, Details and Preparation Testing Procedure
2.3. Testing Procedure
3. Experimental Results and Discussion
3.1. Load-Deflection Curves and Cracking Behaviour
3.1.1. Load-Deflection Curves
3.1.2. Cracking and Yielding Load
3.1.3. Initial Stiffness
3.1.4. Ultimate Load
3.1.5. Cracking Patterns and Failure Modes
3.1.6. Crack Spacing and Widths
3.2. Inelastic Parameters
3.2.1. Maximum Load and Over-Strength Factor
3.2.2. Toughness
3.2.3. Ultimate Deflection and Ductility Factor
3.3. Strains
4. Conclusions
- Full beams with a hybrid fibre content above 1% and beams with openings with the addition of fibres above 1.6% show the highest yield and maximum strengths as well as post-yield strains.
- The increase in hybrid fibre content increased the first cracking load, ultimate load capacity, toughness, ductility, and resulted in a decrease in the average crack spacing, crack width as well as strains in comparison to traditionally RC beams. The greatest benefits were observed for fibres in an amounts of at least 1% and 1.6% in B and BO beams, respectively.
- For the beams B2, BO2 with the lower fibre content, a decrease in ultimate load and transformation to the sudden shear failure mode were noticed.
- The ratios of minimum/average crack spacing and maximum/average crack spacing for the beams with hybrid fibres was similar.
- The openings had a significant impact on the decrease in crack spacing, toughness and ductility factor.
Funding
Acknowledgments
Conflicts of Interest
References
- Mathey, R.G.; Watstein, D. Shear Strength of Beams without Web Reinforcement Containing Deformed Bars of Different Yield Strengths. J. ACI 1963, 60, 183–208. [Google Scholar] [CrossRef]
- Krefeld, W.J.; Thurston, C.W. Contribution of longitudinal steel to shear resistance of reinforced concrete beams. J. ACI 1966, 63, 325–344. [Google Scholar] [CrossRef]
- Kani, G.N.J. Basic Facts Concerning Shear Failure. J. ACI 1966, 63, 675–692. [Google Scholar] [CrossRef]
- Rajagopolan, K.S.; Ferguson, P.M. Exploratory Shear Tests Emphasizing Percentage of Longitudinal Steel. J. ACI 1968, 65, 634–638. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Kim, J. Size Effect in Shear Failure of Longitudinally Reinforced Beams. J. ACI 1984, 81, 456–468. [Google Scholar] [CrossRef]
- Angelakos, D.; Bentz, E.C.; Collins, M.P. Effect of Concrete Strength and Minimum Stirrups on Shear Strength of Large Members. ACI Struct. J. 2001, 98, 290–300. [Google Scholar] [CrossRef]
- Collins, M.P.; Bentz, E.C.; Sherwood, E.G. Where is Shear Reinforcement Required? Review of Research Results and Design Procedures. ACI Struct. J. 2008, 105, 590–600. [Google Scholar] [CrossRef]
- Caldentey, A.P.; Padilla, P.; Muttoni, A.; Ruiz, M.F. Effect of Load Distribution and Variable Depth on Shear Resistance of Slender Beams without Stirrups. ACI Struct. J. 2012, 109, 595–603. [Google Scholar] [CrossRef]
- Shah, S.P.; Rangan, B.V. Fiber reinforced concrete properties. ACI J. 1971, 68, 126–135. [Google Scholar] [CrossRef]
- Swamy, R.N.; Mangat, P.S.; Rao, C.V.S.K. The Mechanics of Fibre Reinforcement of Cement Matrices. In Fiber Reinforced Concrete; ACI Special Publication SP–44; American Concrete Institute: Detroit, MI, USA, 1974; pp. 1–28. [Google Scholar]
- Kormeling, H.A.; Reinhardt, H.W.; Shah, S.P. Static and fatigue properties of concrete beams reinforced with continuous bars and with fibers. ACI J. 1980, 77, 36–43. [Google Scholar] [CrossRef]
- Swamy, R.N.; Al-Ta’an, S.A. Deformation and ultimate strength in flexure of reinforced concrete beams made with steel fibers. ACI Struct. J. 1981, 78, 395–405. [Google Scholar] [CrossRef]
- Swamy, R.N.; Bahia, H.M. The effectiveness of steel fibers as shear reinforcement. Concr. Int. 1985, 3, 35–40. [Google Scholar]
- Rossi, P. Mechanical behavior of metal-fibre reinforced concretes. Cem. Concr. Compos. 1992, 14, 3–16. [Google Scholar] [CrossRef]
- Oh, B.H. Flexural analysis of reinforced concrete beams containing steel fibers. J. Struct. Eng. 1992, 118, 2821–2826. [Google Scholar] [CrossRef]
- Imam, M.; Vandewalle, L.; Mortelmans, F. Shear-moment analysis of reinforced high strength concrete beams containing steel fibres. Can. J. Civ. Eng. 1995, 22, 462–470. [Google Scholar] [CrossRef]
- Wang, N.; Mindess, S.; Ko, K. Fibre reinforced concrete beams under impact loading. Cem. Concr. Res. 1996, 26, 363–376. [Google Scholar] [CrossRef]
- Furlan, S., Jr.; De Hanai, J.B. Shear behaviour of fiber reinforced concrete beams. Cem. Concr. Compos. 1997, 19, 359–366. [Google Scholar] [CrossRef]
- Casanova, P.; Rossi, P. Analysis and design of steel fiber reinforced concrete beams. ACI Struct. J. 1997, 94, 595–602. [Google Scholar] [CrossRef]
- Kwak, Y.K.; Eberhard, M.O.; Kim, W.S.; Kim, J. Shear strength of steel fiber reinforced concrete beams without stirrups. ACI Struct. J. 2002, 99, 530–538. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Hybrid fiber reinforced concrete (HyFRC): Fiber synergy in high strength matrices. Mater. Struct. 2004, 37, 707–716. [Google Scholar] [CrossRef]
- Kang, S.-T.; Choi, J.-I.; Koh, K.-T.; Lee, K.S.; Lee, B.Y. Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete. Compos. Struct. 2016, 145, 37–42. [Google Scholar] [CrossRef]
- Batson, G.; Jenkins, E.; Spatney, R. Steel Fibers as Shear Reinforcement in Beams. ACI J. 1972, 69, 640–644. [Google Scholar] [CrossRef]
- Sharma, A.K. Shear Strength of Steel Fiber Reinforced Concrete Beams. ACI J. 1986, 83, 624–628. [Google Scholar] [CrossRef]
- Al-Ta’an, S.A.; Al-Feel, J.R. Evaluation of shear strength of fibre-reinforced concrete beams. Cem. Concr. Compos. 1990, 12, 87–94. [Google Scholar] [CrossRef]
- Adebar, P.; Mindess, S.; St-Pierre, D.; Olund, B. Shear Tests of Fiber Concrete Beams without Stirrups. ACI Struct. J. 1997, 94, 68–76. [Google Scholar] [CrossRef]
- Cucchiara, C.; La Mendola, L.; Papia, M. Effectiveness of stirrups and steel fibres as shear reinforcement. Cem. Concr. Compos. 2004, 26, 777–786. [Google Scholar] [CrossRef]
- Parra-Montesinos, G.J. Shear strength of beams with deformed steel fibers. Concr. Int. 2006, 28, 57–66. [Google Scholar]
- Dinh, H.H.; Parra-Montesinos, G.J.; Wight, J.K. Shear Behavior of Steel Fiber-Reinforced Concrete Beams without Stirrup Reinforcement. ACI Struct. J. 2010, 107, 597–606. [Google Scholar] [CrossRef]
- Dinh, H.H.; Parra-Montesinos, G.J.; Wight, J.K. Shear Strength Model for Steel Fiber Reinforced Concrete Beams without Stirrup Reinforcement. J. Struct. Eng. 2011, 137, 1039–1051. [Google Scholar] [CrossRef]
- Aoude, H.; Belghiti, M.; Cook, W.D.; Mitchell, D. Response of Steel Fiber-Reinforced Concrete Beams with and without Stirrups. ACI Struct. J. 2012, 109, 359–367. [Google Scholar] [CrossRef]
- Mansur, M.A.; Ong, K.C.G.; Paramasivam, P. Shear Strength of Fibrous Concrete Beams Without Stirrups. J. Struct. Eng. 1986, 112, 2066–2079. [Google Scholar] [CrossRef]
- Narayanan, R.; Darwish, I.Y.S. Use of Steel Fibers as Shear Reinforcement. ACI Struct. J. 1987, 84, 216–227. [Google Scholar] [CrossRef]
- Narayanan, R.; Darwish, I.Y.S. Shear in Mortar Beams Containing Fibers and Fly Ash. J. Struct. Eng. 1988, 114, 84–102. [Google Scholar] [CrossRef]
- Ashour, S.A.; Hasanain, G.S.; Wafa, F.F. Shear Behavior of High-Strength Fiber Reinforced Concrete Beams. ACI Struct. J. 1992, 89, 176–184. [Google Scholar] [CrossRef]
- Lim, D.H.; Oh, B.H. Shear behaviour and shear analysis of reinforced concrete members containing steel fibres. Korean Concr. J. 1993, 5, 171–180. [Google Scholar]
- Shin, S.W.; Oh, J.G.; Ghosh, S.K. Shear Behavior of Laboratory-sized High Strength Concrete Beams Reinforced with Bars and Steel Fibers. In Fiber Reinforced Concrete Developments and Innovations; Daniel, J.I., Shah, S.P., Eds.; ACI Special Publication SP–142; American Concrete Institute: Detroit, MI, USA, 1994; pp. 181–200. ISBN 978087031641. [Google Scholar]
- Biolzi, L.; Guerrini, G.L.; Rosati, G. Overall structural behavior of high strength concrete specimens. Constr. Build. Mater. 1997, 11, 57–63. [Google Scholar] [CrossRef]
- Iman, M.; Vandewalle, L.; Mortelmans, F.; Van Gemert, D. Shear domain of fibre-reinforced high-strength concrete beams. Eng. Struct. 1997, 19, 738–747. [Google Scholar] [CrossRef]
- Khuntia, M.; Stojadinovic, B.; Goel, S. Shear Strength of Normal and High-Strength Fiber Reinforced Concrete Beams without Stirrups. ACI Struct. J. 1999, 96, 282–290. [Google Scholar] [CrossRef]
- Biolzi, L.; Cattaneo, S.; Guerrini, G. Fracture of plain and fiber reinforced high strength mortars slabs with AE and ESPI monitoring. Appl. Compos. Mater. 2000, 7, 1–12. [Google Scholar] [CrossRef]
- Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R.N. Experimental evaluation of fiber reinforced concrete fracture properties. Compos. Part B Eng. 2010, 41, 17–24. [Google Scholar] [CrossRef]
- Casanova, P.; Rossi, P.; Schaller, I. Can steel fibers replace transverse reinforcements in reinforced concrete beams? ACI Mater. J. 1997, 94, 341–354. [Google Scholar] [CrossRef]
- Spinella, N. Shear strength of full-scale steel fibre-reinforced concrete beams without stirrups. Comput. Concr. 2013, 11, 365–382. [Google Scholar] [CrossRef]
- Biolzi, L.; Cattaneo, S. Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions. Cem. Concr. Compos. 2017, 77, 1–13. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-performance fiber-reinforced concrete: A review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar] [CrossRef]
- Parra-Montesinos, G.J.; Reinhardt, H.W.; Naaman, A.E. (Eds.) High Performance Fiber Reinforced Cement Composites 6; Springer: Dordrecht, The Netherlands/Heidelberg, Germany; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Suji, D.; Natesan, S.C.; Muregesan, R. Experimental study on behaviors of polypropylene fibrous concrete beams. J. Zhejiang Univ. Sci. A 2007, 8, 1101–1109. [Google Scholar] [CrossRef]
- FIB. Fib Model Code for Concrete Structures 2010; Wilhelm Ernst & Sohn; Verlag für Architektur und technische Wissenschaften GmbH & Co. KG: Berlin, Germany, 2013. [Google Scholar]
- EN 1992-1-1. Eurocode 2. Design of Concrete Structures Part 1-1: General rules and Rules for Buildings; European-Commission: Brussels, Belgium, 2004.
- Choi, K.K.; Hung-Gun, P.; Wight, J.K. Shear strength of steel fiber-reinforced concrete beams without web reinforcement. ACI Struct. J. 2007, 104, 12–21. [Google Scholar] [CrossRef]
- Spadea, G.; Bencardino, F. Behavior of fiber-reinforced concrete beams under cyclic loading. J. Struct. Eng. 1997, 123, 660–668. [Google Scholar] [CrossRef]
- Spinella, N.; Colajanni, P.; La Mendola, L. Nonlinear Analysis of Beams Reinforced in Shear with Stirrups and Steel Fibers. ACI Struct. J. 2012, 109, 53–64. [Google Scholar] [CrossRef]
- Smarzewski, P. Study of crack development and toughness of fiber reinforced ultra-high performance concrete after exposure to elevated temperature. In ICCS20 20th International Conference on Composite Structures; Structural and Computational Mechanics Book Series; Ferreira, A.J.M., Tornabene, F., Larbi, W., Deu, J.-F., Eds.; Società Editrice Esculapio: Bologna, Italy, 2017; pp. 118–119. [Google Scholar]
- PN-EN 12390-3. Testing Hardened Concrete. Compressive Strength of Test Specimens. 2011. Available online: http://sklep.pkn.pl/pn-en-12390-3-2011p.html (accessed on 25 October 2018).
- PN-EN 12390-6. Testing Hardened Concrete. Tensile Splitting Strength of Test Specimens. 2011. Available online: http://sklep.pkn.pl/pn-en-12390-6-2011p.html (accessed on 25 October 2018).
- PN-EN 12390-5. Testing Hardened Concrete. Flexural Strength of Test Specimens. 2011. Available online: http://sklep.pkn.pl/pn-en-12390-5-2011p.html (accessed on 25 October 2018).
- ASTM C469/C469M-14, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression; ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- PN-B-03264. Plain, Reinforced and Prestressed Concrete Structures—Analysis and Structural Design; DIN: Berlin, Germany, 2002.
- Nasser, K.W.; Acavalos, A.; Daniel, H.R. Behavior and Design of Large Openings in Reinforced Concrete Beams. ACI J. Proc. 1967, 64, 25–33. [Google Scholar] [CrossRef]
- ARAMIS v6.3. User Manual-Software; GOM mbH: Braunschweig, Germany, 2007.
- Pan, A.; Moehle, J.P. Lateral Displacement Ductility of Reinforced Concrete Flat Plates. ACI Struct. J. 1989, 86, 250–258. [Google Scholar] [CrossRef]
- Kheder, G.F.; Al Kafaji, J.M.; Dhiab, R.M. Flexural strength and cracking behavior of hybrid strength concrete beams. Mater. Struct. 2010, 43, 1097–1111. [Google Scholar] [CrossRef]
- Shoaib, A.; Lubell, A.S.; Bindiganavile, V.S. Size Effect in Shear for Steel Fiber Reinforced Concrete Members without Stirrups. ACI Struct. J. 2014, 111, 1081–1090. [Google Scholar] [CrossRef]
- Mitchell, D.; Paultre, P. Ductility and overstrength in seismic design of reinforced concrete structures. Can. J. Civ. Eng. 1994, 21, 1049–1060. [Google Scholar] [CrossRef]
Material | Symbol, Unit | B1 | B2 | B3 | BO1 | BO2 | BO3 |
---|---|---|---|---|---|---|---|
Cement CEM I 52.5R | C, (kg/m3) | 596 | 596 | 596 | 596 | 596 | 596 |
Silica fume | M, (kg/m3) | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 | 59.6 |
Granodiorite 2/8 mm | A, (kg/m3) | 990 | 990 | 990 | 990 | 990 | 990 |
Quartz sand 0.05/2 mm | S, (kg/m3) | 500 | 500 | 500 | 500 | 500 | 500 |
Superplasticiser | SP, (l/m3) | 20 | 20 | 20 | 20 | 20 | 20 |
Water | W, (l/m3) | 196 | 196 | 196 | 164 | 164 | 164 |
Steel fibre | ST, (kg/m3) | – | 39 | 78 | – | 78 | 117 |
VST, (%) | – | 0.5 | 1 | – | 1 | 1.5 | |
Polypropylene fibre | PP, (kg/m3) | – | 0.25 | 0.5 | – | 0.5 | 1 |
VPP, (%) | – | 0.025 | 0.05 | – | 0.05 | 0.1 |
Beam Notation | Slump (mm) | Compressive Strength (MPa) | Splitting Tensile Strength (MPa) | Flexural Tensile Strength (MPa) | Modulus of Elasticity (GPa) |
---|---|---|---|---|---|
B1 | 120 | 113.8 | 5.0 | 8.2 | 38.74 |
B2 | 111 | 106.6 | 9.9 | 8.9 | 32.40 |
B3 | 102 | 111.0 | 11.0 | 9.4 | 39.42 |
BO1 | 116 | 117.0 | 6.5 | 7.8 | 38.99 |
BO2 | 95 | 110.6 | 10.5 | 9.1 | 37.25 |
BO3 | 88 | 106.4 | 10.7 | 9.6 | 39.22 |
Reinforcement | Nominal Diameter (mm) | Modulus of Elasticity (GPa) | Yield Strength (MPa) | Ultimate Strength (MPa) | Ultimate Tensile Strain (–) |
---|---|---|---|---|---|
Tension bar | 22 deformed | 203 | 475 | 644 | 0.105 |
Compression/diagonal bar | 12 deformed | 199 | 456 | 642 | 0.097 |
Stirrup | 6 plain | 193 | 302 | 454 | 0.085 |
Steel fibre | 1 hook-ended | 200 | – | 1100 | – |
Polypropylene fibre | 0.03 straight | 3.5 | – | 350 | – |
Beam Notation | Fibre Volume Content (%) | Cracking | Initial Stiffness (kN/mm) | Yielding | ||
---|---|---|---|---|---|---|
Load (kN) | Deflection (mm) | Load (kN) | Deflection (mm) | |||
B1 | – | 89.4 | 0.64 | 139.69 | 350.9 | 10.19 |
B2 | 0.5 ST + 0.025 PP | 93.3 | 0.87 | 107.24 | – 1 | – 1 |
B3 | 1 ST + 0.05 PP | 109.8 | 0.52 | 211.16 | 432.5 | 7.57 |
BO1 | – | 85.2 | 1.45 | 58.76 | 331.3 | 10.03 |
BO2 | 1 ST + 0.05 PP | 123.6 | 2.17 | 56.96 | 414.1 | 10.48 |
BO3 | 1.5 ST +0.1 PP | 125.3 | 2.08 | 60.24 | 414.3 | 11.88 |
Beam Notation | Fibre Volume Content (%) | Maximum | Ultimate | Increase/Decrease in Maximum and Ultimate Load (%) | Failure Mode | ||
---|---|---|---|---|---|---|---|
Load (kN) | Deflection (mm) | Load (kN) | Deflection (mm) | ||||
B1 | – | 397.0 | 37.16 | 317.6 | 44.54 | – | Flexure-shear with stirrup rupture |
B2 | 0.5 ST + 0.025 PP | 294.8 | 5.51 | 235.8 | 6.23 | −25.76 | Shear |
B3 | 1 ST + 0.05 PP | 466.5 | 33.98 | 373.2 | 73.94 | 17.51 | Flexure-shear |
BO1 | – | 404.6 | 42.79 | 323.7 | 42.98 | – | Flexure-shear with stirrup rupture |
BO2 | 1 ST + 0.05 PP | 452.7 | 24.91 | 362.2 | 25.30 | 11.89 | Flexure-shear |
BO3 | 1.5 ST +0.1 PP | 462.4 | 51.65 | 369.9 | 65.09 | 14.27 | Flexure |
Beam Notation | Loading Stages | Percentage Loading | |||||||
---|---|---|---|---|---|---|---|---|---|
Applied Load (kN) | Service Load (kN) | Yield Load (kN) | Maximum Load (kN) | Ultimate Load (kN) | Applied/Service Load (%) | Applied/Yield Load (%) | Applied/Maximum Load (%) | Applied/Ultimate Load (%) | |
B1 | 350.0 | 238.2 | 350.9 | 397.0 | 317.6 | 146.9 | 99.7 | 88.2 | 110.2 |
B2 | 290.0 | 176.9 | – | 294.8 | 235.8 | 163.9 | – | 98.4 | 123.0 |
B3 | 430.0 | 279.9 | 432.5 | 466.5 | 373.2 | 153.6 | 99.4 | 92.2 | 115.2 |
BO1 | 305.0 | 242.8 | 331.3 | 404.6 | 323.7 | 125.6 | 92.1 | 75.4 | 94.2 |
BO2 | 390.0 | 271.6 | 414.1 | 452.7 | 362.2 | 143.6 | 94.2 | 86.1 | 107.7 |
BO3 | 415.0 | 277.4 | 414.3 | 462.4 | 369.9 | 143.6 | 100.2 | 89.7 | 112.2 |
Beam Notation | Crack Spacing | |||||
---|---|---|---|---|---|---|
Number of Cracks | Minimum Crack Spacing (mm) | Maximum Crack Spacing (mm) | Average Crack Spacing (mm) | Minimum/Average Crack Spacing | Maximum/Average Crack Spacing | |
B1 | 42 | 26 | 164 | 95 | 0.274 | 1.726 |
B2 | 30 | 17 | 159 | 88 | 0.193 | 1.807 |
B3 | 57 | 23 | 79 | 51 | 0.451 | 1.549 |
BO1 | 33 | 34 | 138 | 86 | 0.395 | 1.605 |
BO2 | 36 | 16 | 148 | 82 | 0.195 | 1.805 |
BO3 | 51 | 13 | 148 | 81 | 0.160 | 1.827 |
Beam Notation | Loading Stages | |||||||
---|---|---|---|---|---|---|---|---|
Service | Yield | Maximum | Ultimate | |||||
Number of Cracks | Max. Crack Width (mm) | Number of Cracks | Max. Crack Width (mm) | Number of Cracks | Max. Crack Width (mm) | Number of Cracks | Max. Crack Width (mm) | |
B1 | 32 | 0.755 | 42 | 1.500 | 42 | 1.505 | 42 | 1.505 |
B2 | 13 | 0.105 | – | – | 30 | 0.300 | 30 | 0.300 |
B3 | 45 | 0.205 | 54 | 0.505 | 57 | 0.505 | 57 | 1.150 |
BO1 | 22 | 1.150 | 25 | 1.500 | 33 | 1.705 | 33 | 1.705 |
BO2 | 36 | 1.375 | 36 | 1.750 | 36 | 1.750 | 36 | 1.750 |
BO3 | 31 | 0.250 | 49 | 1.050 | 51 | 1.050 | 51 | 1.050 |
Beam Notation | Fibre Volume Content (%) | Over-Strength Factor (–) | Toughness (kN×mm) | Increase/Decrease in Toughness (%) | Ductility Factor (–) | Increase/Decrease in Ductility (%) |
---|---|---|---|---|---|---|
B1 | – | 0.91 | 15,513.26 | – | 4.37 | – |
B2 | 0.5 ST + 0.025 PP | – | 1455.24 | −966.03 | – | – |
B3 | 1 ST + 0.05 PP | 0.86 | 32,445.63 | 109.15 | 9.77 | 123.57 |
BO1 | – | 0.98 | 14,845.62 | – | 4.28 | – |
BO2 | 1 ST + 0.05 PP | 0.87 | 9102.68 | −38.68 | 2.41 | −77.59 |
BO3 | 1.5 ST +0.1 PP | 0.89 | 27,054.38 | 82.24 | 5.48 | 28.04 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smarzewski, P. Hybrid Fibres as Shear Reinforcement in High-Performance Concrete Beams with and without Openings. Appl. Sci. 2018, 8, 2070. https://doi.org/10.3390/app8112070
Smarzewski P. Hybrid Fibres as Shear Reinforcement in High-Performance Concrete Beams with and without Openings. Applied Sciences. 2018; 8(11):2070. https://doi.org/10.3390/app8112070
Chicago/Turabian StyleSmarzewski, Piotr. 2018. "Hybrid Fibres as Shear Reinforcement in High-Performance Concrete Beams with and without Openings" Applied Sciences 8, no. 11: 2070. https://doi.org/10.3390/app8112070
APA StyleSmarzewski, P. (2018). Hybrid Fibres as Shear Reinforcement in High-Performance Concrete Beams with and without Openings. Applied Sciences, 8(11), 2070. https://doi.org/10.3390/app8112070