A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities
Abstract
:1. Introduction
2. Harvester System Overview
3. Analytical Modeling
4. Simulation Results and Discussions
5. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, D.; Tudor, M.J.; Beeby, S.P. Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas. Sci. Technol. 2010, 21, 022001. [Google Scholar] [CrossRef]
- Tang, L.; Yang, Y.; Soh, C.K. Toward Broadband Vibration-based Energy harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 1867–1897. [Google Scholar] [CrossRef]
- Xue, H.; Hu, Y.; Wang, Q.M. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2008, 55, 2104–2108. [Google Scholar]
- Erturk, A.; Renno, J.M.; Inman, D.J. Modeling of Piezoelectric Energy harvesting from an L shaped beam mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 2009, 20, 529–544. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, J. Connected vibrating Piezoelectric Bimorph beams as a wide-band piezoelectric power harvester. J. Intell. Mater. Syst. Struct. 2009, 20, 569–574. [Google Scholar] [CrossRef]
- Wu, H.; Tang, L.; Yang, Y.; Soh, C.K. A novel two-degrees-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 2013, 24, 357–368. [Google Scholar] [CrossRef]
- Qi, S.; Shuttleworth, R.; Oyadiji, S.O.; Wright, J. Design of multiresonant beam for broadband piezoelectric energy harvesting. Smart Mater. Struct. 2010, 19, 094009. [Google Scholar] [CrossRef]
- Li, P.; Liu, Y.; Wang, Y.; Luo, C.; Li, G.; Hu, J.; Liu, W.; Zhang, W. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure. AIP Adv. 2015, 5, 047151. [Google Scholar] [CrossRef] [Green Version]
- Niri, D.E.; Salamone, S. A passively tunable mechanism for a dual bimorph energy harvester with variable tip stiffness and axial load. Smart Mater. Struct. 2012, 21, 125025. [Google Scholar] [CrossRef]
- Zhu, Y.; Zu, J.; Su, W. Broadband energy harvesting through piezoelectric beam subjected to dynamic compressive loading. Smart Mater. Struct. 2013, 22, 045007. [Google Scholar] [CrossRef]
- Peters, C.; Maurath, D.; Schock, W.; Mezger, F.; Manoli, Y. A closed-loop wide-range tunable mechanical resonator for energy harvesting systems. J. Micromech. Microeng. 2009, 19, 094004. [Google Scholar] [CrossRef]
- Hoffmann, D.; Willmann, A.; Hehn, T.; Folkmer, B.; Manoli, Y. A self-adaptive energy harvesting system. Smart Mater. Struct. 2016, 25, 035013. [Google Scholar] [CrossRef]
- Dong, L.; Prasad, M.G.; Fisher, F.T. Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting. Smart Mater. Struct. 2016, 25, 065019. [Google Scholar] [CrossRef]
- Sang, M.C.; Dayou, J.; Liew, W.Y. Increasing the Output from Piezoelectric Energy Harvester Using Width-Split Method with Verification. Int. J. Precis. Eng. Man. 2013, 14, 2149–2155. [Google Scholar] [CrossRef]
- Dayou, J.; Kim, J.; Im, J.; Zhai, L.; How, A.T.; Liew, W.Y. The effects of width reduction on the damping of a cantilever beam and its application in increasing the harvesting power of piezoelectric energy harvester. Smart Mater. Struct. 2015, 24, 045006. [Google Scholar] [CrossRef]
- Reddy, R.A.; Umapathy, M.; Ezhilarasi, D.; Uma, G. Improved energy harvesting from vibration by introducing cavity in a cantilever beam. J. Vib. Control 2014, 22, 3057–3066. [Google Scholar] [CrossRef]
- Reddy, R.A.; Umapathy, M.; Ezhilarasi, D.; Uma, G. Cantilever Beam with Trapezoidal Cavity for Improved Energy Harvesting. Int. J. Precis. Eng. Manuf. 2015, 16, 1875–1881. [Google Scholar] [CrossRef]
- Reddy, R.A.; Umapathy, M.; Ezhilarasi, D.; Uma, G. Modelling and Experimental investigations on stepped beam with cavity for energy harvesting. Smart Struct. Syst. 2015, 16, 623–640. [Google Scholar] [CrossRef]
- Raju, S.S.; Umapathy, M.; Uma, G. Cantilever piezoelectric energy harvester with multiple cavities. Smart Mater. Struct. 2015, 24, 115023. [Google Scholar] [CrossRef]
- Usharani, R.; Uma, G.; Umapathy, M. Design of High Output Broadband Piezoelectric Energy Harvester with Double Tapered Cavity Beam. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 343–351. [Google Scholar] [CrossRef]
- Usharani, R.; Uma, G.; Umapathy, M.; Choi, S.B. A new broadband energy harvester using propped cantilever beam with variable overhang. Smart Struct. Syst. 2017, 19, 567–576. [Google Scholar] [CrossRef]
- Usharani, R.; Uma, G.; Umapathy, M.; Choi, S.B. A new piezoelectric-patched cantilever beam with a step section for high performance of energy harvesting. Sens. Actuators A 2017, 265, 47–61. [Google Scholar]
- Usharani, R.; Uma, G.; Umapathy, M.; Choi, S.B. Design of high output broadband piezoelectric energy harvester. J. Mech. Sci. Technol. 2017, 31, 3131–3142. [Google Scholar] [CrossRef]
- Usharani, R.; Uma, G.; Umapathy, M.; Choi, S.B. A new piezoelectric energy harvester using two beams with tapered cavity for high power and wide broadband. Int. J. Mech. Sci. 2018, 142–143, 224–234. [Google Scholar]
- Yeo, G.H.; Ma, X.; Rahn, C.; Trolier-McKinstry, S. Efficient Piezoelectric Energy Harvesters Utilizing (001) Textured Bimorph PZT Films on Flexible Metal Foils. Adv. Funct. Mater. 2016, 26, 5940–5946. [Google Scholar] [CrossRef]
- Jeong, K.C.; Baek, C.; Kingon, A.I.; Park, K.; Kim, S.H. Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester. Small 2018, 14, 1704022. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Qin, Y. Theoretical study of enhancing the piezoelectric nanogenerator’s output power by optimizing the external force’s shape. APL Mater. 2017, 5, 074101. [Google Scholar] [CrossRef]
- Dechant, E.; Fedulov, F.; Fetisov, L.Y.; Shamonin, M. Bandwidth widening of piezoelectric cantilever beam arrays by mass-tip tuning for low-frequency vibration energy harvesting. Appl. Sci. 2017, 7, 1324. [Google Scholar] [CrossRef]
- Abramovich, H.; Har-nes, I. Analysis and Experimental Validation of a Piezoelectric Harvester with Enhanced Frequency Bandwidth. Materials 2018, 11, 1243. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.S.; Suresh, K.; Kumar, U.V.; Uma, G.; Umapathy, M. Resonance based DC current sensor. Measurement 2012, 45, 369–374. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, N. Optimal design of a piezoelectric coupled beam for power harvesting. Smart Mater. Struct. 2012, 21, 085013. [Google Scholar] [CrossRef]
- Chen, N.S.; Wang, G.J.; Chien, M.C. Analytical modeling of piezoelectric vibration-induced micro power generator. Mechatronics 2006, 16, 379–387. [Google Scholar] [CrossRef]
- Salehi-Khojin, A.; Bashash, S.; Jalili, N. Modeling and experimental vibration analysis of nanomechanical cantilever active probes. J. Micromech. Microeng. 2008, 18, 085008. [Google Scholar] [CrossRef]
- Erturk, A. Electromechanical Modelling of Piezoelectric Energy Harvesters. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2009. [Google Scholar]
Sections | Length (mm) | Width (mm) | Thickness (mm) | |||
---|---|---|---|---|---|---|
Symbol | Value | Symbol | Value | Symbol | Value | |
I | L1 | 10 | b1 | 40 | t1 | 10 |
II | L2–L1 | 76.5 | b2 | 25 | t2 | 6 |
III | L3–L2 | 50 | b3 | 40 | t3 | 10 |
IV | L4–L3 | 76.5 | b4 | 25 | t4 | 6 |
V | L5–L4 | 50 | b5 | 40 | t5 | 50 |
VI | L6–L5 | 10 | b6 | 12.5 | t6 | 2 |
VII | L7–L6 | 76.5 | b7 | 12.5 | t7 | 2 |
VIII | L8–L7 | 113.5 | b8 | 12.5 | t8 | 2 |
Symbol | Description | Value | Units |
---|---|---|---|
Eb | Young’s modulus of the beam | 71 | GPa |
ρb | Density of the beam | 2700 | Kg m−3 |
Symbol | Description | Value | Units |
---|---|---|---|
lp | Length of patch 1 and 2 | 76.5 | mm |
b2, b4 | Width of patch 1 and 2 | 25 | mm |
b7 | Width of patch 3 | 12.5 | mm |
tp | Thickness of patch 1, 2 and 3 | 0.5 | mm |
Ep | Young’s modulus | 47.62 | GPa |
ρp | Density | 7500 | Kg m−3 |
d31 | Piezoelectric charge coefficient | −265 | pCN−1 |
Proposed Harvester | First Mode | Second Mode | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
F1 (Hz) | Voc (V) | Rlopt (KΩ) | VR (V) | P (mW) | F2 (Hz) | Voc (V) | Rlopt (KΩ) | VR (V) | P (mW) | |
with step and cavity | 21.02 | 61.55 | 181 | 34.46 | 6.6 | 35.58 | 48.85 | 122 | 27.69 | 6.13 |
with step and without cavity | 21.83 | 55.66 | 174 | 31.18 | 5.56 | 35.77 | 48.63 | 116 | 27.74 | 6.15 |
Conventional Cantilever based harvester | 21.02 | 4.00 | 72.13 | 2.16 | 0.058 | 129.58 | 0.45 | 11.7 | 0.29 | 0.0044 |
Parameter | First Mode | Second Mode | ||||
---|---|---|---|---|---|---|
Analytical | Experimental | % Error | Analytical | Experimental | % Error | |
Frequency (Hz) | 21.02 | 20.42 | 2.85 | 35.58 | 34.74 | 2.35 |
Voc (V) | 61.55 | 60.1 | 2.36 | 48.85 | 47.6 | 2.57 |
VR (V) | 34.46 | 35.54 | 3.13 | 27.69 | 26.18 | 5.47 |
P (mW) | 6.6 | 6.65 | 0.76 | 6.13 | 6.23 | 1.63 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usharani, R.; Uma, G.; Umapathy, M.; Choi, S.-B. A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities. Appl. Sci. 2018, 8, 2091. https://doi.org/10.3390/app8112091
Usharani R, Uma G, Umapathy M, Choi S-B. A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities. Applied Sciences. 2018; 8(11):2091. https://doi.org/10.3390/app8112091
Chicago/Turabian StyleUsharani, Ramalingam, Gandhi Uma, Mangalanathan Umapathy, and Seung-Bok Choi. 2018. "A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities" Applied Sciences 8, no. 11: 2091. https://doi.org/10.3390/app8112091
APA StyleUsharani, R., Uma, G., Umapathy, M., & Choi, S. -B. (2018). A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities. Applied Sciences, 8(11), 2091. https://doi.org/10.3390/app8112091