A Multiparameter Approach to Evaluate Post-Stroke Patients: An Application on Robotic Rehabilitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Setting
2.1.2. Participants
2.1.3. Robotic Therapy: Equipment and Motor Task
2.2. Patient Clinical Assessment
- Fugl–Meyer Assessment (FMA), sections A–D (score 0–66) for the measurement of the Body Function domain of the International Classification of Functioning. FMA is a 3-point ordinal scale which evaluates active movement of every upper limb joint and the coordination during motion [7]. It is one of the most widely adopted in the evaluation of the stroke patients [31], has good psychometric measures, such as excellent test-retest reliability [32] and excellent inter-rater/intra-rater reliability [33], and for this reason is highly recommended for use in clinical practice [34].
- Wolf Motor Function Test (WMFT) for the measurement of the Activity domain, especially the capacity qualifier [8]. It consists of 17 items divided in 15 function-based tasks and 2 strength-based tasks. For the function-based tasks, execution time is recorded and the score is given on a 6-point ordinal scale. Together with the Action Research Arm Test, the WMFT is considered the most reliable outcome measure for Activity domain due to its psychometric properties and clinical usefulness [34].
2.3. Patient Multi-Domain Assessment
2.3.1. Kinematic and EMG Assessments
Kinematics Analysis
- mean duration of the forward phase;
- shoulder flexion angle, projected into the sagittal plane;
- elbow flexion angle;
- normalized jerk, as a measure of smoothness, computed according to the formula presented in Teulings et al. [35].
EMG Analysis and Synergies Extraction
2.3.2. Synergies Evaluation Metrics
2.3.3. EEG Acquisition Protocol
2.3.4. EEG Data Analysis
- (1)
- The mean Event Related Desynchronization (ERD) in the window [0.6 s, 1.8 s] with respect to the baseline [−4.5 s, −2 s]. From now on, ERDc(Pj) and ERDi(Pj) will refer to the average ERD for the j-th patient computed for the CONTRA or IPSI electrode, respectively.
- (2)
- The laterality coefficient (LC), which indicates the activation of the lesioned hemisphere with respect to the other according to the following formula [28]:
3. Results
3.1. Clinical Assessment Results
3.2. Multi-Domain Assessment Results
3.2.1. Kinematics Analysis
3.2.2. EMG (Muscle Synergies) Analysis
3.2.3. EEG Analysis
4. Discussion
4.1. Multi-Domain Assessment
4.1.1. Kinematics
4.1.2. EMG (Muscle Synergies)
4.1.3. EEG
4.2. Integration
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pollock, A.; Farmer, S.E.; Brady, M.C.; Langhorne, P.; Mead, G.E.; Mehrholz, J.; van Wijck, F. Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef] [Green Version]
- Miller, E.L.; Murray, L.; Richards, L.; Zorowitz, R.D.; Bakas, T.; Clark, P.; Billinger, S.A. Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: A scientific statement from the American Heart Association. Stroke 2010, 41, 2402–2448. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Chua, K.S.; Phua, K.S.; Wang, C.; Chin, Z.Y.; Kuah, C.W.; Low, W.; Guan, C. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 2015, 46, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Fasoli, S.E.; Krebs, H.I.; Stein, J.; Frontera, W.R.; Hogan, N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch. Phys. Med. Rehabil. 2003, 84, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Lloréns, R.; Gil-Gómez, J.A.; Alcañiz, M.; Colomer, C.; Noé, E. Improvement in balance using a virtual reality-based stepping exercise: A randomized controlled trial involving individuals with chronic stroke. Clin. Rehabil. 2015, 29, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.C.; Guarino, P.D.; Richards, L.G.; Haselkorn, J.K.; Wittenberg, G.F.; Federman, D.G.; Bever, C.T., Jr. Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 2010, 362, 1772–1783. [Google Scholar] [CrossRef] [PubMed]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [PubMed]
- Wolf, S.L.; Catlin, P.A.; Ellis, M.; Archer, A.L.; Morgan, B.; Piacentino, A. Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke 2001, 32, 1635–1639. [Google Scholar] [CrossRef] [PubMed]
- Uswatte, G.; Taub, E.; Morris, D.; Vignolo, M.; McCulloch, K. Reliability and validity of the upper-extremity Motor Activity Log-14 for measuring real-world arm use. Stroke 2005, 36, 2493–2496. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.K.; McArthur, K.S.; Quinn, T.J. Assessment scales in stroke: Clinimetric and clinical considerations. Clin. Interv. Aging 2013, 8, 201. [Google Scholar] [PubMed]
- Scano, A.; Chiavenna, A.; Malosio, M.; Tosatti, L.M.; Molteni, F. Kinect V2 implementation and testing of the reaching performance scale for motor evaluation of patients with neurological impairment. Med. Eng. Phys. 2018, 56, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Ferrarin, M.; Bovi, G.; Rabuffetti, M.; Mazzoleni, P.; Montesano, A.; Moroni, I.; Pareyson, D. Reliability of instrumented movement analysis as outcome measure in Charcot–Marie–Tooth disease: Results from a multitask locomotor protocol. Gait Posture 2011, 34, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Thrane, G.; Sunnerhagen, K.S.; Persson, H.C.; Opheim, A.; Alt Murphy, M. Kinematic upper extremity performance in people with near or fully recovered sensorimotor function after stroke. Phys. Theory Pract. 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pila, O.; Duret, C.; Gracies, J.M.; Francisco, G.E.; Bayle, N.; Hutin, É. Evolution of upper limb kinematics four years after subacute robot-assisted rehabilitation in stroke patients. Int. J. Neurosci. 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Beretta, E.; Cesareo, A.; Biffi, E.; Schafer, C.; Galbiati, S.; Strazzer, S. Rehabilitation of Upper Limb in Children with Acquired Brain Injury: A Preliminary Comparative Study. J. Healthc. Eng. 2018. [Google Scholar] [CrossRef] [PubMed]
- Carpinella, I.; Cattaneo, D.; Ferrarin, M. Quantitative assessment of upper limb motor function in Multiple Sclerosis using an instrumented Action Research Arm Test. J. Neuroeng. Rehabil. 2014, 11, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bizzi, E.; Cheung, V.C. The neural origin of muscle synergies. Front. Comput. Neurosci. 2013, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- D’Avella, A.; Portone, A.; Fernandez, L.; Lacquaniti, F. Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 2006, 26, 7791–7810. [Google Scholar] [CrossRef] [PubMed]
- Cheung, V.C.; Piron, L.; Agostini, M.; Silvoni, S.; Turolla, A.; Bizzi, E. Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 19563–19568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, V.C.; Turolla, A.; Agostini, M.; Silvoni, S.; Bennis, C.; Kasi, P.; Bizzi, E. Muscle synergy patterns as physiological markers of motor cortical damage. Proc. Natl. Acad. Sci. USA 2012, 109, 14652–14656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scano, A.; Chiavenna, A.; Malosio, M.; Molinari Tosatti, L.; Molteni, F. Muscle Synergies-Based Characterization and Clustering of Poststroke Patients in Reaching Movements. Front. Bioeng. Biotechnol. 2017, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Da Silva, F.L. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophys. 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Pfurtscheller, G. Functional brain imaging based on ERD/ERS. Vis. Res. 2001, 41, 1257–1260. [Google Scholar] [CrossRef]
- Attwell, D.; Iadecola, C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002, 25, 621–625. [Google Scholar] [CrossRef]
- Henson, R.N.; Williams, N. Recent Advances in Functional Neuroimaging Analysis for Cognitive Neuroscience; University of Cambridge: Cambridge, UK, 2018. [Google Scholar]
- Debener, S.; Minow, F.; Emkes, R.; Gandras, K.; Vos, M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 2012, 49, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, V.; Daly, I.; Pichiorri, F.; Mattia, D.; Müller-Putz, G.R.; Neuper, C. Relationship between electrical brain responses to motor imagery and motor impairment in stroke. Stroke 2012, 43, 2735–2740. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Kwon, G.H.; Kim, Y.H.; Lee, J.H.; Kim, L. EEG response varies with lesion location in patients with chronic stroke. J. Neuroeng. Rehabil. 2016, 13, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulea, T.C.; Kilicarslan, A.; Ozdemir, R.; Paloski, W.H.; Contreras-Vidal, J.L. Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding. J. Vis. Exp. 2013, 77. [Google Scholar] [CrossRef] [PubMed]
- Caimmi, M.; Chiavenna, A.; Scano, A.; Gasperini, G.; Giovanzana, C.; Molinari, L.T.; Molteni, F. Using robot fully assisted functional movements in upper-limb rehabilitation of chronic stroke patients: Preliminary results. Eur. J. Phys. Rehabil. Med. 2017, 53, 390–399. [Google Scholar] [PubMed]
- Santisteban, L.; Térémetz, M.; Bleton, J.P.; Baron, J.C.; Maier, M.A.; Lindberg, P.G. Upper limb outcome measures used in stroke rehabilitation studies: A systematic literature review. PLoS ONE 2016, 11, e0154792. [Google Scholar] [CrossRef] [PubMed]
- Platz, T.; Pinkowski, C.; van Wijck, F.; Kim, I.H.; Di Bella, P.; Johnson, G. Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: A multicentre study. Clin. Rehabil. 2005, 19, 404–411. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.W.; Propst, M.; Nelson, S.G. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys. Ther. 1983, 63, 1606–1610. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.A.; Resteghini, C.; Feys, P.; Lamers, I. An overview of systematic reviews on upper extremity outcome measures after stroke. BMC Neurol. 2015, 15, 29. [Google Scholar] [CrossRef] [PubMed]
- Teulings, H.L.; Contreras-Vidal, J.L.; Stelmach, G.E.; Adler, C.H. Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp. Neurol. 1997, 146, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2001; pp. 556–562. [Google Scholar]
- Pittaccio, S.; Garavaglia, L.; Molteni, E.; Guanziroli, E.; Zappasodi, F.; Beretta, E.; Strazzer, S.; Molteni, F.; Villa, E.; Passaretti, F. Can passive mobilization provide clinically-relevant brain stimulation? A pilot EEG and NIRS study on healthy subjects. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 3547–3550. [Google Scholar]
- Kang, H.; Park, W.; Kang, J.H.; Kwon, G.H.; Kim, S.P.; Kim, L. A neural analysis on motor imagery and passive movement using a haptic device. In Proceedings of the 2012 12th International Conference on Control, Automation and Systems, JeJu Island, Korea, 17–21 October 2012; pp. 1536–1541. [Google Scholar]
- Kaiser, V.; Kreilinger, A.; Müller-Putz, G.R.; Neuper, C. First steps toward a motor imagery based stroke BCI: New strategy to set up a classifier. Front. Neurosci. 2011, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Chaumon, M.; Bishop, D.V.; Busch, N.A. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J. Neurosci. Methods 2015, 250, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Buma, F.E.; van Kordelaar, J.; Raemaekers, M.; van Wegen, E.E.; Ramsey, N.F.; Kwakkel, G. Brain activation is related to smoothness of upper limb movements after stroke. Exp. Brain Res. 2016, 234, 2077–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tropea, P.; Monaco, V.; Coscia, M.; Posteraro, F.; Micera, S. Effects of early and intensive neuro-rehabilitative treatment on muscle synergies in acute post-stroke patients: A pilot study. J. Neuroeng. Rehabil. 2013, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Scherer, R.; Mohapp, A.; Grieshofer, P.; Pfurtscheller, G.; Neuper, C. Sensorimotor EEG patterns during motor imagery in hemiparetic stroke patients. Int. J. Bioelectromagn. 2007, 9, 155–162. [Google Scholar]
- Rossiter, H.E.; Boudrias, M.H.; Ward, N.S. Do movement-related beta oscillations change after stroke? J. Neurophysiol. 2014, 112, 2053–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alegre, M.; Labarga, A.; Gurtubay, I.G.; Iriarte, J.; Malanda, A.; Artieda, J. Beta electroencephalograph changes during passive movements: Sensory afferences contribute to beta event-related desynchronization in humans. Neurosci. Lett. 2002, 331, 29–32. [Google Scholar] [CrossRef]
- Formaggio, E.; Storti, S.F.; Galazzo, I.B.; Gandolfi, M.; Geroin, C.; Smania, N.; Manganotti, P. Modulation of event-related desynchronization in robot-assisted hand performance: Brain oscillatory changes in active, passive and imagined movements. J. Neuroeng. Rehabil. 2013, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Bütefisch, C.M.; Weβling, M.; Netz, J.; Seitz, R.J.; Hömberg, V. Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabil. Neural Repair 2008, 22, 4–21. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Toro, C.; Grafman, J.; Manganotti, P.; Leocani, L.; Hallett, M. Event-related desynchronization (ERD) in the alpha frequency during development of implicit and explicit learning. Electroencephalogr. Clin. Neurophysiol. 1997, 102, 374–381. [Google Scholar] [CrossRef]
- Gandolfi, M.; Formaggio, E.; Geroin, C.; Storti, S.F.; Boscolo Galazzo, I.; Bortolami, M.; Smania, N. Quantification of Upper Limb Motor Recovery and EEG Power Changes after Robot-Assisted Bilateral Arm Training in Chronic Stroke Patients: A Prospective Pilot Study. Neural Plast. 2018, 2018, 8105480. [Google Scholar] [CrossRef] [PubMed]
- Page, S.J.; Fulk, G.D.; Boyne, P. Clinically important differences for the upper-extremity Fugl-Meyer Scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 2018, 92, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, P.; Mastropietro, A.; Scano, A.; Chiavenna, A.; Mrakic-Sposta, S.; Caimmi, M.; Rizzo, G. Quantitative EEG for Predicting Upper Limb Motor Recovery in Chronic Stroke Robot-Assisted Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1058–1067. [Google Scholar] [CrossRef] [PubMed]
- Kitago, T.; Goldsmith, J.; Harran, M.; Kane, L.; Berard, J.; Huang, S.; Huang, V.S. Robotic therapy for chronic stroke: General recovery of impairment or improved task-specific skill? J. Neurophys. 2015, 114, 1885–1894. [Google Scholar] [CrossRef] [PubMed]
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | |||||
---|---|---|---|---|---|---|---|---|---|
Clinical scales | FMA (0–66) (a. u.) | T0 | 56.00 | 36.00 | 11.00 | 61.00 | 48.00 | ||
T1 | 57.00 | 44.00 | 12.00 | 65.00 | 57.00 | ||||
Δ | 1.00 | 8.00 | 1.00 | 4.00 | 9.00 | ||||
Δres% | 10.00 | 26.67 | 1.82 | 80.00 | 50.00 | ||||
WMFT (0–75) (a. u.) | T0 | 66.00 | 47.00 | 12.00 | 71.00 | 66.00 | |||
T1 | 70.00 | 51.00 | 16.00 | 72.00 | 71.00 | ||||
Δ | 4.00 | 4.00 | 4.00 | 1.00 | 5.00 | ||||
Δres% | 44.44 | 14.29 | 6.35 | 25.00 | 55.56 | ||||
Kinematics | Shoulder Flexion (°) | T0 | 62.82 | 31.36 | 48.50 | 5.55 | 39.51 | ||
T1 | 59.04 | 31.80 | 78.75 | 15.68 | 50.25 | ||||
Δ | −3.78 | 0.44 | 30.25 | 10.13 | 10.73 | ||||
Elbow Flexion (°) | T0 | 135.99 | 123.14 | 122.63 | 124.24 | 107.36 | |||
T1 | 132.62 | 125.07 | 116.74 | 124.64 | 101.05 | ||||
Δ | −3.37 | 1.93 | −5.88 | 0.41 | −6.31 | ||||
Execution Time (s) | T0 | 1.25 | 1.42 | 2.35 | 1.08 | 2.03 | |||
T1 | 1.20 | 1.18 | 2.27 | 1.24 | 1.62 | ||||
Δ | −0.05 | −0.24 | −0.09 | 0.16 | −0.41 | ||||
Jerk (m/s3) | T0 | 80.73 | 126.39 | 332.54 | 143.65 | 290.71 | |||
T1 | 60.92 | 71.93 | 248.34 | 81.46 | 163.03 | ||||
Δ | −19.81 | −54.46 | −84.20 | −62.19 | −127.68 | ||||
Synergies | Spatial Synergies (Dot Product) (a. u.) | synergy 1 | 0.64 | 0.96 | 0.84 | 0.93 | 0.92 | ||
synergy 2 | 0.94 | 0.94 | 0.87 | 0.86 | 0.89 | ||||
Temporal Components (Correlation), (a. u.) | synergy 1 | 0.86 | 0.97 | 0.79 | 0.89 | 0.89 | |||
synergy 2 | 0.61 | 0.87 | 0.56 | −0.15 | 0.86 | ||||
EEG | ERDi—alpha (a. u.) | T0 | −0.28 | −0.05 | −0.30 | −0.10 | 0.17 | ||
T1 | −0.38 | −0.18 | −0.31 | −0.16 | −0.46 | ||||
Δ | −0.10 | −0.13 | −0.02 | −0.06 | −0.46 | ||||
ERDc—alpha (a. u.) | T0 | −0.30 | 0.01 | −0.13 | −0.29 | −0.11 | |||
T1 | −0.27 | −0.29 | −0.40 | −0.29 | −0.55 | ||||
Δ | 0.03 | −0.30 | −0.27 | 0.01 | −0.44 | ||||
ERDi—beta (a. u.) | T0 | −0.28 | −0.28 | −0.22 | −0.20 | −0.30 | |||
T1 | −0.22 | −0.22 | −0.15 | −0.34 | −0.35 | ||||
Δ | 0.06 | 0.06 | 0.08 | −0.15 | −0.05 | ||||
ERDc—beta (a. u.) | T0 | −0.10 | −0.30 | −0.04 | −0.19 | −0.12 | |||
T1 | −0.41 | −0.31 | −0.25 | −0.16 | −0.52 | ||||
Δ | −0.32 | −0.01 | −0.21 | 0.04 | −0.39 | ||||
LC—alpha (a. u.) | T0 | 0.02 | −1.00 | −0.40 | 0.48 | 1.00 | |||
T1 | −0.18 | 0.22 | 0.11 | 0.28 | 0.09 | ||||
Δ | −0.20 | 1.22 | 0.51 | −0.20 | −0.91 | ||||
LC—beta (a. u.) | T0 | −0.48 | 0.03 | −0.72 | −0.01 | −0.42 | |||
T1 | 0.31 | 0.17 | 0.25 | −0.38 | 0.19 | ||||
Δ | 0.79 | 0.13 | 0.97 | −0.36 | 0.62 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belfatto, A.; Scano, A.; Chiavenna, A.; Mastropietro, A.; Mrakic-Sposta, S.; Pittaccio, S.; Molinari Tosatti, L.; Molteni, F.; Rizzo, G. A Multiparameter Approach to Evaluate Post-Stroke Patients: An Application on Robotic Rehabilitation. Appl. Sci. 2018, 8, 2248. https://doi.org/10.3390/app8112248
Belfatto A, Scano A, Chiavenna A, Mastropietro A, Mrakic-Sposta S, Pittaccio S, Molinari Tosatti L, Molteni F, Rizzo G. A Multiparameter Approach to Evaluate Post-Stroke Patients: An Application on Robotic Rehabilitation. Applied Sciences. 2018; 8(11):2248. https://doi.org/10.3390/app8112248
Chicago/Turabian StyleBelfatto, Antonella, Alessandro Scano, Andrea Chiavenna, Alfonso Mastropietro, Simona Mrakic-Sposta, Simone Pittaccio, Lorenzo Molinari Tosatti, Franco Molteni, and Giovanna Rizzo. 2018. "A Multiparameter Approach to Evaluate Post-Stroke Patients: An Application on Robotic Rehabilitation" Applied Sciences 8, no. 11: 2248. https://doi.org/10.3390/app8112248
APA StyleBelfatto, A., Scano, A., Chiavenna, A., Mastropietro, A., Mrakic-Sposta, S., Pittaccio, S., Molinari Tosatti, L., Molteni, F., & Rizzo, G. (2018). A Multiparameter Approach to Evaluate Post-Stroke Patients: An Application on Robotic Rehabilitation. Applied Sciences, 8(11), 2248. https://doi.org/10.3390/app8112248