Theoretical Study of a 0.22 THz Backward Wave Oscillator Based on a Dual-Gridded, Carbon-Nanotube Cold Cathode
Abstract
:1. Introduction
2. Design and Simulation
2.1. Dual-Gridded Field Emission Structure Based on CNT Cold Cathode
2.2. High-Compression-Ratio CNT Electron Gun Based on Dual-Gridded System
2.3. A 0.22 THz BWO Based on Dual-Gridded CNT Cold Cathode Electron Gun
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Booske, J.H.; Dobbs, R.J.; Joye, C.D.; Kory, C.L.; Neil, G.R.; Park, G.S.; Park, J.; Temkin, R.J. Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 54–75. [Google Scholar] [CrossRef]
- Baughman, W.E.; Yokus, H.; Balci, S.; Wilbert, D.S.; Kung, P.; Kim, S.M. Observation of hydrofluoric acid burns on osseous tissues by means of terahertz spectroscopic imaging. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 387–394. [Google Scholar] [CrossRef]
- Ostmann, T.K.; Jastrow, C.; Baaske, K.; Heinen, B.; Schwerdtfeger, M.; Kärst, U.; Hintzsche, H.; Stopper, H.; Koch, M.; Schrader, T. Field exposure and dosimetry in the THz frequency range. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 12–25. [Google Scholar] [CrossRef]
- Komandin, G.A.; Chuchupal, S.V.; Lebedev, S.P.; Goncharov, Y.G.; Korolev, A.F.; Porodinkov, O.E.; Spektor, I.E.; Volkov, A.A. BWO generators for terahertz dielectric measurements. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 440–444. [Google Scholar] [CrossRef]
- Suen, J.Y.; Fang, M.T.; Lubin, P.M. Global distribution of water vapor and cloud cover—Sites for high-performance THz applications. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 86–100. [Google Scholar] [CrossRef]
- Maestrini, A.; Mehdi, I.; Siles, J.V.; Ward, J.S.; Lin, R.; Thomas, B.; Lee, C.; Gill, J.; Chattopadhyay, G.; Schlecht, E.; et al. Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.47 THz. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 177–185. [Google Scholar] [CrossRef]
- Otsuji, T.; Popov, V.; Ryzhii, V. Active graphene plasmonics for terahertz device applications. J. Phys. D Appl. Phys. 2014, 47, 125–134. [Google Scholar] [CrossRef]
- Sharma, R.; Schrottke, L.; Wienold, M.; Biermann, K.; Tahraoui, A.; Grahn, H.T. Influence of post-growth rapid thermal annealing on the transport and lasing characteristics of terahertz quantum-cascade lasers. J. Phys. D Appl. Phys. 2013, 46, 305107. [Google Scholar] [CrossRef]
- Gong, H.; Travish, G.; Xu, J.; Wei, Y.; Feng, J.; Gong, Y. High-power tunable terahertz radiation by high-order harmonic generation. IEEE Trans. Electron Devices 2013, 60, 482–486. [Google Scholar] [CrossRef]
- Booske, J.H. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation. Phys. Plasmas 2008, 15, 055502. [Google Scholar] [CrossRef]
- Parker, R.K.; Abrams, R.H.; Danly, B., Jr.; Levush, B. Vacuum electronics. IEEE Trans. Microw. Theory Tech. 2002, 50, 835–845. [Google Scholar] [CrossRef]
- Xu, C.; Yin, Y.; Bi, L.; Zhang, Z.; Chang, Z.; Rauf, A.; Ullah, S.; Wang, B.; Meng, L. A novel wire-wrap slow-wave structure for terahertz backward wave oscillator applications. IEEE Trans. Electron Devices 2017, 64, 293–299. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; Liu, P.; Du, C.; Li, H.; Xu, A. A THz backward-wave oscillator based on a double-grating rectangular waveguide. IEEE Trans. Electron Devices 2013, 60, 1463–1468. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, Y.; Shi, X.; Yue, L.; Wei, W.; Xu, J.; Zhao, G.; Huang, M.; Wang, Z.; Gong, Y.; et al. A modified slow-wave structure for backward-wave oscillator design in THz band. IEEE Trans. Electron Devices 2014, 4, 741–748. [Google Scholar] [CrossRef]
- Mineo, M.; Paoloni, C. Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications. IEEE Trans. Electron Devices 2010, 57, 1481–1484. [Google Scholar] [CrossRef]
- Collins, C.M.; Parmee, R.J.; Milne, W.I.; Cole, M.T. High performance field emitters. Adv. Sci. 2016, 3, 1500318. [Google Scholar] [CrossRef] [PubMed]
- Milne, W.I.; Teo, K.B.K.; Minoux, E.; Groening, O.; Gangloff, L.; Hudanski, L.; Schnell, J.-P.; Dieumegard, D.; Peauger, F.; Bu, I.Y.Y.; et al. Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. B 2006, 24, 345–348. [Google Scholar] [CrossRef]
- Kim, H.J.; Choi, J.J.; Han, J.-H.; Park, J.H.; Yoo, J.-B. Design and field emission test of carbon nanotube pasted cathodes for traveling wave tube applications. IEEE Trans. Electron Devices 2006, 53, 2674–2680. [Google Scholar] [CrossRef]
- Ulisse, G.; Brunetti, F.; Tamburri, E.; Orlanducci, S.; Cirillo, M.; Terranova, M.L.; Carlo, A.D. Carbon nanotube cathodes for electron gun. IEEE Electron Device Lett. 2013, 34, 698–700. [Google Scholar] [CrossRef]
- Manohara, H.M.; Toda, R.; Lin, H.R.; Liao, A.; Bronikowski, M.J.; Siegel, P.H. Carbon nanotube bundle array cold cathodes for THz vacuum tube sources. J. Infrared Millim. Terahertz Waves 2009, 30, 1338–1350. [Google Scholar] [CrossRef]
- Yuan, X.; Zhu, W.; Zhang, Y.; Xu, N.; Yan, Y.; Wu, J.; Shen, Y.; Chen, J.; She, J.; Deng, S. A Fully-sealed carbon-nanotube cold-cathode terahertz gyrotron. Sci. Rep. 2016, 6, 32936. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, Y.; Cole, M.T.; Yan, Y.; Li, X.; Parmee, R.; Wu, J.; Xu, N.; Milne, W.I.; Deng, S. A truncated-cone carbon nanotube cold-cathode electron gun. Carbon 2017, 120, 374–379. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.; Yang, H.; Li, X.; Xu, N.; Deng, S.; Yan, Y. A Gridded high-compression-ratio carbonnanotube cold cathode electron gun. IEEE Electron Device Lett. 2015, 36, 399–401. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, B.; Cole, M.T.; Zhang, Y.; Deng, S.; Milne, W.I.; Yan, Y. Theoretical Research on a multibeam-modulated electron gun based on carbon nanotube cold cathodes. IEEE Trans. Electron Devices 2016, 62, 2919–2924. [Google Scholar] [CrossRef]
- Chen, Q.; Yuan, X.; Zhang, Y.; Li, H.; Wang, B.; Yan, Y.; Meng, L. Study on a high beam transparency gridded X-ray electron gun based on carbon nanotube cold cathode. J. Nanoelectron. Optoelectron. 2018, 13, 1265–1270. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Mann, M.; Hasko, D.; Lei, W.; Wang, B.; Chu, D.; Pribat, D.; Amaratunga, G.A.J.; Milne, W.I. High emission current density, vertically aligned carbon nanotube mesh, field emitter array. Appl. Phys. Lett. 2010, 97, 113107. [Google Scholar] [CrossRef]
- Faillon, G.; Kornfeld, G.; Bosch, E.; Thumm, M.K. Microwave Tubes. In Vacuum Electronics; Eichmeier, J.A., Thumm, M.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 3, pp. 1–84. [Google Scholar]
- Benford, J.; Swegle, J.A.; Schamiloglu, E. High Power Microwaves, 2nd ed.; Taylor and Francis Group: New York, NY, USA, 2007; pp. 321–370. [Google Scholar]
- Nashed, A.I.; Chaudhuri, S.K.; Safavi-Naeini, S. A 650-GHz backward wave oscillator based on axial loaded double defected-photonic crystal SWS. IEEE Trans. Plasma Sci. 2017, 45, 372–380. [Google Scholar] [CrossRef]
Symbols | Parameters | Values and Units |
---|---|---|
rc | Cathode substrate radius | 1.116 mm |
h1 | Mesh hole of the FSG | 0.12 mm |
h2 | Mesh hole of the SSG | 0.13 mm |
w1 | Wire line of the FSG | 0.02 mm |
w2 | Wire line of the SSG | 0.01 mm |
t1 | Thickness of the FSG | 0.02 mm |
t2 | Thickness of the SSG | 0.02 mm |
d1 | Distance between CNT and SSG | 0.1 mm |
Uc | Cathode voltage | 0 |
U2 | SSG voltage | 0.5 kV |
Symbols | Parameters | Values and Units |
---|---|---|
d | Circular waveguide inner diameter | 1.054 mm |
t | Disk inner diameter | 0.4 mm |
w | Disk width | 0.076 mm |
p | Period length | 0.3044 mm |
f | Operating frquency | 0.22 THz |
U | Operating voltage | 21 kV |
I | Operating current | 50 mA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Yuan, X.; Cole, M.T.; Zhang, Y.; Meng, L.; Yan, Y. Theoretical Study of a 0.22 THz Backward Wave Oscillator Based on a Dual-Gridded, Carbon-Nanotube Cold Cathode. Appl. Sci. 2018, 8, 2462. https://doi.org/10.3390/app8122462
Chen Q, Yuan X, Cole MT, Zhang Y, Meng L, Yan Y. Theoretical Study of a 0.22 THz Backward Wave Oscillator Based on a Dual-Gridded, Carbon-Nanotube Cold Cathode. Applied Sciences. 2018; 8(12):2462. https://doi.org/10.3390/app8122462
Chicago/Turabian StyleChen, Qingyun, Xuesong Yuan, Matthew T. Cole, Yu Zhang, Lin Meng, and Yang Yan. 2018. "Theoretical Study of a 0.22 THz Backward Wave Oscillator Based on a Dual-Gridded, Carbon-Nanotube Cold Cathode" Applied Sciences 8, no. 12: 2462. https://doi.org/10.3390/app8122462
APA StyleChen, Q., Yuan, X., Cole, M. T., Zhang, Y., Meng, L., & Yan, Y. (2018). Theoretical Study of a 0.22 THz Backward Wave Oscillator Based on a Dual-Gridded, Carbon-Nanotube Cold Cathode. Applied Sciences, 8(12), 2462. https://doi.org/10.3390/app8122462