Mediterranean Green Roof Simulation in Caldes de Montbui (Barcelona): Thermal and Hydrological Performance Test of Frankenia laevis L., Dymondia margaretae Compton and Iris lutescens Lam
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Climatic Characterization
2.2. Green Roof System
2.3. Plant Material
2.4. Irrigation System
2.5. Measurements’ Design
2.6. Statistical Analysis
3. Results
3.1. Volumetric Water Content (VWC), Relative Extractable Water (REW) and Rainwater Holding Capacity
3.2. Soil Temperature
3.3. Plant Development: Vegetation Cover and Biomass
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Days | D. margaretae | F. laevis | I. lutescens | Air | ||||||
---|---|---|---|---|---|---|---|---|---|---|
40% ET0 | 20% ET0 | 0% ET0 | 40% ET0 | 20% ET0 | 0% ET0 | 40% ET0 | 20% ET0 | 0% ET0 | ||
Maximum temperatures since July to September | ||||||||||
06/07/09 | 30 | 27 | 31 | 30 | 27 | 30 | 28 | 26 | 28 | 30,6 |
13/07/09 | 33 | 30 | 38 | 33 | 31 | 36 | 34 | 29 | 33 | 33,5 |
20/07/09 | 32 | 29 | 35 | 32 | 31 | 33 | 29 | 28 | 29 | 32,9 |
27/07/09 | 32 | 30 | 36 | 32 | 32 | 34 | 31 | 29 | 30 | 31,8 |
03/08/09 | 30 | 28 | 32 | 29 | 28 | 32 | 28 | 26 | 28 | 27,9 |
10/08/09 | 29 | 27 | 31 | 28 | 27 | 29 | 27 | 25 | 27 | 29,3 |
11/08/09 | 31 | 29 | 34 | 29 | 29 | 31 | 28 | 26 | 29 | 31 |
17/08/09 | 33 | 30 | 37 | 33 | 32 | 35 | 31 | 29 | 32 | 38,1 |
24/08/09 | 33 | 31 | 35 | 32 | 31 | 34 | 31 | 29 | 30 | 33,7 |
31/08/09 | 30 | 28 | 32 | 29 | 29 | 31 | 28 | 26 | 27 | 28,9 |
07/09/09 | 30 | 29 | 32 | 30 | 29 | 31 | 28 | 26 | 28 | 28,7 |
14/09/09 | 26 | 24 | 26 | 25 | 24 | 26 | 24 | 21 | 23 | 24,1 |
21/09/09 | 25 | 23 | 26 | 24 | 22 | 25 | 23 | 20 | 21 | 26,1 |
28/09/09 | 24 | 22 | 26 | 23 | 23 | 26 | 22 | 20 | 22 | 26,8 |
Minimum temperatures since November to March | ||||||||||
01/11/09 | 16 | 15 | 16 | 16 | 15 | 15 | 14 | 12 | 13 | 11 |
16/11/09 | 11 | 10 | 10 | 10 | 9 | 10 | 9 | 6 | 8 | 6 |
01/12/09 | 7 | 7 | 5 | 7 | 6 | 6 | 5 | 3 | 4 | 1 |
16/12/09 | 5 | 4 | 2 | 4 | 3 | 3 | 3 | 1 | 2 | −5 |
31/12/09 | 9 | 9 | 9 | 10 | 9 | 9 | 8 | 6 | 7 | 8 |
15/01/10 | 7 | 6 | 6 | 7 | 6 | 6 | 5 | 2 | 4 | 2 |
30/01/10 | 6 | 5 | 4 | 6 | 5 | 5 | 4 | 2 | 3 | 2 |
31/01/10 | 5 | 4 | 3 | 5 | 4 | 4 | 3 | 1 | 2 | 0 |
14/02/10 | 5 | 4 | 3 | 5 | 4 | 4 | 3 | 1 | 2 | −2 |
01/03/10 | 8 | 7 | 7 | 9 | 7 | 7 | 6 | 4 | 5 | 3 |
16/03/10 | 6 | 5 | 4 | 7 | 5 | 5 | 4 | 2 | 3 | −1 |
References
- Brenneisen, S. Space for urban wildlife: Designing green roofs as habitats in Switzerland. Urban Habitats 2006, 4, 27–36. [Google Scholar]
- Carter, T.; Butler, C. Ecological impacts of replacing traditional roofs with green roofs in two urban areas. Cities Environ. 2008, 1, 1–17. [Google Scholar] [CrossRef]
- Lundholm, J.; Peck, S.W. Introduction: Frontiers of green roof ecology. Urban Ecosyst. 2008, 11, 335–337. [Google Scholar] [CrossRef]
- Benvenuti, S. Wildflower green roofs for urban landscaping, ecological sustainability and biodiversity. Landsc. Urban Plan. 2014, 124, 151–161. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Spolek, G. Performance monitoring of three eco-roofs in Portland, Oregon. Urban Ecosyst. 2008, 11, 349–359. [Google Scholar] [CrossRef]
- Stovin, V. The potential of green roofs to manage. Urban Stormwater. Water Environ. J. 2010, 24, 192–199. [Google Scholar] [CrossRef]
- Berndtsson, J.C. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2005, 77, 217–226. [Google Scholar] [CrossRef]
- Uhl, M.; Schiedt, L. Green roof storm water retention–monitoring results. In Proceedings of the 11th International Conference on Urban Drainage, Edinburgh, UK, 31 August–5 September 2008. [Google Scholar]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Liu, K.; Baskaran, B. Thermal Performance of Extensive Green Roofs in Cold Climates. In Proceedings of the 2005 World Sustainable Building Conference, Tokyo, Japan, 27–29 September 2005; Available online: http://www.nrc-cnrc.gc.ca/obj/irc/doc/pubs/nrcc48202/nrcc48202.pdf (accessed on 15 March 2010).
- Spala, A.; Bagiorgas, H.S.; Assimakopoulos, M.N.; Kalavrouziotis, J.; Matthopoulos, D.; Mihalakakou, G. On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece. Renew. Energy 2008, 33, 173–177. [Google Scholar] [CrossRef]
- Desjarlais, A.O.; Zaltash, A.; Atchley, J.A. Thermal Performance of Vegetative Roofing Systems. In Proceedings of the 25th RCI International Convention, Orlando, FL, USA, 25–30 March 2010. [Google Scholar]
- Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
- Susca, T.; Gaffin, S.R.; Dell’Osso, G.R. Positive effects of vegetation: Urban heat island and green roofs. Environ. Pollut. 2011, 159, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Blanusa, T.; Vaz Monteiro, M.M.; Fantozzi, F.; Vysini, E.; Li, Y.; Cameron, R.W.F. Alternatives to Sedum on greenroofs: Can broad leaf perennial plants offer better ‘cooling service’? Build. Environ. 2013, 59, 99–106. [Google Scholar] [CrossRef]
- Ekşi, M.; Uzun, A. Investigation of thermal benefits of an extensive green roof in Istanbul climate. Sci. Res. Essays 2013, 8, 623–632. [Google Scholar] [CrossRef]
- Stovin, V.; Poë, S.; De-Ville, S.; Berretta, C. The influence of substrate and vegetation configuration on green roof hydrological performance. Ecol. Eng. 2015, 85, 159–172. [Google Scholar] [CrossRef]
- Dunnett, N.; Nagase, A.; Booth, R.; Grime, P. Influence of vegetation composition on runoff in two simulated green roof experiments. Urban Ecosyst. 2008, 11, 385–398. [Google Scholar] [CrossRef]
- Nagase, A.; Dunnett, N. Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure. Landsc. Urban Plan. 2011, 104, 356–363. [Google Scholar] [CrossRef]
- Van Mechelen, C.; Dutoit, T.; Hermy, M. Mediterranean open habitat vegetation offers great potential for extensive green roof design. Landsc. Urban Plan. 2014, 121, 81–91. [Google Scholar] [CrossRef]
- Sendo, T.; Kanechi, M.; Uno, Y.; Inagaki, N. Evaluation of growth and green coverage of ten ornamental species for planting as urban rooftop greening. J. Jpn. Soc. Hortic. Sci. 2010, 79, 69–76. [Google Scholar] [CrossRef]
- Caneva, G.; Kumbaric, A.; Savo, V.; Casalini, R. Ecological approach in selecting extensive green roof plants: A dataset of Mediterranean plants. Plant Biosyst. 2015, 149, 374–383. [Google Scholar] [CrossRef]
- Lundholm, J.; Williams, N.S.G. Effects of Vegetation on Green Roof Ecosystem Services. In Green Roof Ecosystems; Sutton, R.K., Ed.; Springer: Cham, Switzerland, 2015; Volume 9, pp. 211–232. [Google Scholar]
- Feng, C.; Meng, Q.; Zhang, Y. Theoretical and experimental analysis of the energy balance of extensive green roofs. Energy Build. 2010, 42, 959–965. [Google Scholar] [CrossRef]
- Jaffal, I.; Ouldboukhitine, S.E.; Belarbi, R. A comprehensive study of the impact of green roofs on building energy performance. Renew. Energy 2012, 43, 157–164. [Google Scholar] [CrossRef]
- Kumar, R.; Kaushik, S.C. Performance evaluation of green roof and shading for thermal protection of buildings. Build. Environ. 2005, 40, 1505–1511. [Google Scholar] [CrossRef]
- Casalini, R.; Bartoli, F.; Caneva, G. Investigation of seed germination of twelve Mediterranean wildflowers for evaluating their potential use on extensive green roofs. Acta Hortic. 2017, 1189, 263–266. [Google Scholar] [CrossRef]
- Wolf, D.; Lundholm, J.T. Water uptake in green roof microcosms: Effects of plant species and water availability. Ecol. Eng. 2008, 33, 179–186. [Google Scholar] [CrossRef]
- Schroll, E.; Lambrinos, J.G.; Sandrock, D. An Evaluation of Plant Selections and Irrigation Requirements for Extensive Green Roofs in the Pacific Northwestern United States. HortTechnology 2011, 21, 314–322. [Google Scholar]
- Scott MacIvor, J.; Lundholm, J. Performance evaluation of native plants suited to extensive Green roof conditions in a maritime climate. Ecol. Eng. 2011, 37, 407–417. [Google Scholar] [CrossRef]
- Nardini, A.; Andri, S.; Crasso, M. Influence of substrate depth and vegetation type on temperature and water runoff mitigation by extensive green roofs: Shrubs versus herbaceous plants. Urban Ecosyst. 2012, 15, 697–708. [Google Scholar] [CrossRef]
- Raimondo, F.; Trifilò, P.; Lo Gullo, M.A.; Andri, S.; Savi, T.; Nardini, A. Plant performance on Mediterranean green roofs: Interaction of species-specific hydraulic strategies and substrate water relations. AoB Plants 2015, 7, plv007. [Google Scholar] [CrossRef]
- Fioretti, R.; Palla, A.; Lanza, L.G.; Principi, P. Green roof energy and water related performance in Mediterranean climate. Build. Environ. 2010, 45, 1890–1904. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Solé, C.; Castell, A.; Cabeza, L.F. Green roofs as passive system for energy savings when using rubber crumbs as drainage layer. Energy Procedia 2012, 30, 452–460. [Google Scholar] [CrossRef]
- Zinzi, M.; Agnoli, S. Cool and green roofs. An energy and comfort comparison between passive cooling and mitigation urban heat island techniques for residential buildings in the Mediterranean region. Energy Build. 2012, 55, 66–76. [Google Scholar] [CrossRef]
- Olivieri, F.; Di Perna, C.; D’Orazio, M.; Olivieri, L.; Neila, J. Experimental measurements and numerical model for the summer performance assessment of extensive green roofs in a Mediterranean coastal climate. Energy Build. 2013, 63, 1–14. [Google Scholar] [CrossRef]
- IPCC. Climate Change. Five Assessment Report. 2013. Available online: http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml-1 (accessed on 10 January 2009).
- Available online: http://www.ruralcat.net/web/guest/agrometeo.estacions (accessed on 10 January 2009).
- ZinCo 2010. Retrieved January 22 2010. Available online: http://www.zincogreenroof.com/EN/downloads/pdfs/ZinCo_Product_List.pdf (accessed on 20 December 2008).
- Vestrella, A.; Savé, R.; Biel, C. An Experimental Study in Simulated Greenroof in Mediterranean Climate. J. Agric. Sci. 2015, 7, 95–111. [Google Scholar] [CrossRef]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.E.; Moreno, F.; Girón, I.F.; Blázquez, O.M. Stomatal control of water use in olive tree leaves. Plant Soil 1997, 190, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Nemali, K.S.; Montesano, F.; Dove, S.K.; van Iersel, M.W. Calibration and performance of moisture sensors in soilless substrates: ECH2O and Theta probes. Sci. Hortic. 2007, 112, 227–234. [Google Scholar] [CrossRef]
- Topp, G.C. State of the art of measuring soil water content. Hydrol. Process. 2003, 17, 2993–2996. [Google Scholar] [CrossRef]
- Casadesús, J.; Biel, C.; Savé, R. Turf color measurement with conventional digital cameras. In Proceedings of the EFITA/WCCA Joint Congress on It in Agriculture, Vila Real, Portugal, 25–28 July 2005. [Google Scholar]
- Casadesús, J.; Kaya, Y.; Bort, J.; Nachit, M.M.; Araus, J.L.; Amor, S.; Ferrazzano, G.; Maalouf, F.; Maccaferri, M.; Martos, V.; et al. Water Use Efficiency. Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann. Appl. Biol. 2007, 150, 227–236. [Google Scholar] [CrossRef]
- Carson, T.B.; Marasco, D.E.; Culligan, P.J.; McGillis, W.R. Hydrological performance of extensive green roofs in New York City: Observations and multi-year modeling of three full-scale systems. Environ. Res. Lett. 2013, 8, 1–13. [Google Scholar] [CrossRef]
- Farrell, C.; Szota, C.; Williams, N.S.G.; Arndt, S.K. High water users can be drought tolerant: Using physiological traits for Greenroof plant selection. Plant Soil 2013, 372, 177. [Google Scholar] [CrossRef]
- Del Barrio, E.P. Analysis of the green roofs cooling potential in buildings. Energy Build. 1998, 27, 179–193. [Google Scholar] [CrossRef]
- Kanellopoulou, K. Cooling performance of green roofs. In Proceedings of the PLEA 2008–25th Conference on Passive and Low Energy Architecture, Dublin, Ireland, 22–24 October 2008. [Google Scholar]
- Wong, N.H.; Cheong, D.K.V.; Yan, H.; Soh, J.; Ong, C.L.; Sia, A. The effects of rooftop garden on energy consumption of a commercial building in Singapore. Energy Build. 2003, 35, 353–364. [Google Scholar] [CrossRef]
Species | Common Name | Habitat | Growth Form |
---|---|---|---|
Dymondia margaretae L. | Silver carpet | Southern African endemic. Evergreen prostrate-rhizomatous. Sandy coastal soils | Groundcover |
Frankenia laevis Compton | Sea heath | Sandy coastal soils and marshland | Sub-shrub |
Iris lutescens Lam. | Crimean iris | Western, central Mediterranean. Dry and rocky fields | Rhizomatous-herbaceous |
Rainfall | Variation after Each Rain (L/m2) | Variation after 60 h of Rain (L/m2) | |||||
---|---|---|---|---|---|---|---|
Events | Amount | D. margaretae | F. laevis | I. lutescens | D. margaretae | F. laevis | I. lutescens |
10 August 2009 | 27.3 mm | +7.03 | +10.56 | +4.04 | −2.93 | −4.81 | −1.97 |
15 September 2009 | 48.3 mm | +5.94 | +9.96 | +5.33 | −2.70 | −4.20 | −2.21 |
20 September 2009 | 23.3 mm | +2.39 | +2.58 | +2.50 | −2.56 | −2.89 | −1.92 |
09 February 2010 | 33 mm | +1.57 | +2.18 | +1.42 | −2.75 | −3.66 | −2.12 |
08 March 2010 | 30.4 mm | +0.85 | +1.63 | +1.38 | −1.63 | −2.53 | −1.45 |
Plants Species | Irrigation | Above Ground (g) | Roots (g) | Total (g) |
---|---|---|---|---|
D. margaretae | 0% ET0 | / | / | / |
20% ET0 | 17.1 | 53.63 | 70.63 | |
40% ET0 | 2.83 | 13.13 | 15.96 | |
Mean | 19.52 | 77.13 | 96.64 | |
F. laevis | 0% ET0 | 30.15 | 3.15 | 33.30 |
20% ET0 | 415.73 | 44.21 | 459.94 | |
40% ET0 | 558.93 | 40.50 | 599.43 | |
Mean | 334.94 | 29.29 | 364.22 | |
I. lutescens | 0% ET0 | 78.91 | 56.27 | 135.18 |
20% ET0 | 136.83 | 105.38 | 242.21 | |
40% ET0 | 193.22 | 103.24 | 296.46 | |
Mean | 136.32 | 88.30 | 224.62 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vestrella, A.; Biel, C.; Savè, R.; Bartoli, F. Mediterranean Green Roof Simulation in Caldes de Montbui (Barcelona): Thermal and Hydrological Performance Test of Frankenia laevis L., Dymondia margaretae Compton and Iris lutescens Lam. Appl. Sci. 2018, 8, 2497. https://doi.org/10.3390/app8122497
Vestrella A, Biel C, Savè R, Bartoli F. Mediterranean Green Roof Simulation in Caldes de Montbui (Barcelona): Thermal and Hydrological Performance Test of Frankenia laevis L., Dymondia margaretae Compton and Iris lutescens Lam. Applied Sciences. 2018; 8(12):2497. https://doi.org/10.3390/app8122497
Chicago/Turabian StyleVestrella, Antonio, Carmen Biel, Robert Savè, and Flavia Bartoli. 2018. "Mediterranean Green Roof Simulation in Caldes de Montbui (Barcelona): Thermal and Hydrological Performance Test of Frankenia laevis L., Dymondia margaretae Compton and Iris lutescens Lam" Applied Sciences 8, no. 12: 2497. https://doi.org/10.3390/app8122497
APA StyleVestrella, A., Biel, C., Savè, R., & Bartoli, F. (2018). Mediterranean Green Roof Simulation in Caldes de Montbui (Barcelona): Thermal and Hydrological Performance Test of Frankenia laevis L., Dymondia margaretae Compton and Iris lutescens Lam. Applied Sciences, 8(12), 2497. https://doi.org/10.3390/app8122497