A Novel Markerless Lung Tumor-Tracking Method Using Treatment MV Beam Imaging
Abstract
:1. Introduction
2. Materials and Method
3. Results
3.1. Phantom Study Results
3.2. Patient Data Study Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Gantry Angle (°) | Motion Range (mm) | Maximum Deviation (mm) | Average Deviation (mm) | ||||
---|---|---|---|---|---|---|---|
SI | Orth | 2D | SI | Orth | 2D | ||
30 | 10 | 0.4 | 0.6 | 0.6 | 0.2 | 0.2 | 0.3 |
12 | 0.8 | 0.6 | 0.8 | 0.3 | 0.2 | 0.5 | |
14 | 0.8 | 0.6 | 0.8 | 0.3 | 0.2 | 0.4 | |
16 | 0.8 | 0.6 | 0.8 | 0.3 | 0.3 | 0.5 | |
20 | 1.0 | 0.5 | 1.1 | 0.4 | 0.2 | 0.5 | |
45 | 10 | 0.7 | 0.7 | 0.7 | 0.2 | 0.3 | 0.4 |
12 | 0.7 | 0.6 | 0.9 | 0.2 | 0.3 | 0.4 | |
14 | 0.7 | 0.6 | 0.8 | 0.3 | 0.3 | 0.5 | |
16 | 0.7 | 0.7 | 0.9 | 0.4 | 0.3 | 0.5 | |
20 | 0.8 | 0.5 | 1.0 | 0.3 | 0.2 | 0.4 | |
90 | 10 | 0.7 | 0.6 | 0.8 | 0.3 | 0.2 | 0.4 |
12 | 0.6 | 0.7 | 0.8 | 0.2 | 0.2 | 0.4 | |
14 | 0.5 | 0.8 | 0.8 | 0.2 | 0.3 | 0.4 | |
16 | 0.9 | 0.6 | 0.9 | 0.4 | 0.2 | 0.5 | |
20 | 0.7 | 0.7 | 0.8 | 0.3 | 0.3 | 0.4 | |
150 | 10 | 0.7 | 0.8 | 0.9 | 0.2 | 0.3 | 0.5 |
12 | 0.7 | 0.9 | 1.1 | 0.3 | 0.4 | 0.5 | |
14 | 0.6 | 1.1 | 1.1 | 0.2 | 0.5 | 0.6 | |
16 | 0.6 | 1.3 | 1.3 | 0.3 | 0.4 | 0.6 | |
20 | 0.7 | 1.2 | 1.2 | 0.3 | 0.5 | 0.6 | |
180 | 10 | 0.4 | 0.8 | 0.9 | 0.2 | 0.3 | 0.4 |
12 | 0.6 | 0.6 | 0.7 | 0.2 | 0.2 | 0.3 | |
14 | 0.9 | 0.6 | 0.9 | 0.3 | 0.3 | 0.4 | |
16 | 0.8 | 0.6 | 0.8 | 0.2 | 0.2 | 0.3 | |
20 | 1.2 | 0.8 | 1.3 | 0.5 | 0.3 | 0.7 | |
220 | 10 | 0.7 | 0.5 | 0.7 | 0.2 | 0.1 | 0.3 |
12 | 0.7 | 0.5 | 0.8 | 0.3 | 0.2 | 0.3 | |
14 | 0.6 | 1.0 | 1.0 | 0.2 | 0.4 | 0.5 | |
16 | 0.7 | 1.0 | 1.1 | 0.3 | 0.3 | 0.5 | |
20 | 0.9 | 0.8 | 0.9 | 0.3 | 0.3 | 0.5 | |
270 | 10 | 0.9 | 0.7 | 0.9 | 0.2 | 0.3 | 0.4 |
12 | 0.6 | 0.5 | 0.6 | 0.2 | 0.2 | 0.3 | |
14 | 0.8 | 0.7 | 0.9 | 0.4 | 0.3 | 0.5 | |
16 | 0.8 | 0.6 | 0.9 | 0.3 | 0.2 | 0.4 | |
20 | 0.9 | 0.6 | 1.0 | 0.3 | 0.2 | 0.4 | |
315 | 10 | 0.7 | 0.7 | 0.8 | 0.3 | 0.3 | 0.5 |
12 | 0.8 | 0.9 | 0.9 | 0.3 | 0.4 | 0.5 | |
14 | 1.3 | 1.4 | 1.4 | 0.4 | 0.7 | 0.9 | |
16 | 1.4 | 1.6 | 1.6 | 0.7 | 0.6 | 1.0 | |
20 | 0.7 | 1.1 | 1.1 | 0.3 | 0.4 | 0.6 | |
330 | 10 | 1.1 | 1.7 | 1.7 | 0.4 | 0.7 | 0.9 |
12 | 0.9 | 1.0 | 1.2 | 0.4 | 0.4 | 0.6 | |
14 | 1.0 | 1.0 | 1.2 | 0.4 | 0.4 | 0.6 | |
16 | 1.5 | 1.3 | 1.5 | 0.6 | 0.5 | 0.9 | |
20 | 1.5 | 1.8 | 1.8 | 0.6 | 0.7 | 1.0 |
Gantry Angle (°) | Motion Range (mm) | Maximum Deviation (mm) | Average Deviation (mm) | ||||
---|---|---|---|---|---|---|---|
SI | Orth | 2D | SI | Orth | 2D | ||
30 | 10 | 0.6 | 0.6 | 0.8 | 0.2 | 0.2 | 0.3 |
12 | 0.9 | 0.8 | 0.9 | 0.3 | 0.3 | 0.5 | |
14 | 0.9 | 0.9 | 1.0 | 0.3 | 0.3 | 0.5 | |
16 | 1.0 | 0.8 | 1.0 | 0.3 | 0.3 | 0.5 | |
20 | 1.0 | 1.0 | 1.0 | 0.3 | 0.3 | 0.5 | |
45 | 10 | 0.3 | 0.7 | 0.8 | 0.2 | 0.3 | 0.4 |
12 | 0.7 | 0.7 | 0.9 | 0.3 | 0.3 | 0.4 | |
14 | 0.8 | 0.5 | 0.8 | 0.3 | 0.3 | 0.5 | |
16 | 0.7 | 0.5 | 0.8 | 0.2 | 0.3 | 0.4 | |
20 | 0.5 | 0.7 | 0.7 | 0.2 | 0.3 | 0.4 | |
90 | 10 | 0.7 | 0.9 | 0.9 | 0.2 | 0.2 | 0.4 |
12 | 0.5 | 0.9 | 0.9 | 0.2 | 0.3 | 0.4 | |
14 | 0.6 | 1.2 | 1.2 | 0.3 | 0.4 | 0.5 | |
16 | 0.6 | 1.0 | 1.0 | 0.2 | 0.4 | 0.5 | |
20 | 1.1 | 1.3 | 1.3 | 0.5 | 0.5 | 0.8 | |
150 | 10 | 0.6 | 0.7 | 0.7 | 0.1 | 0.2 | 0.3 |
12 | 0.7 | 0.7 | 0.7 | 0.2 | 0.3 | 0.4 | |
14 | 0.6 | 0.8 | 0.9 | 0.2 | 0.3 | 0.4 | |
16 | 0.5 | 0.8 | 0.8 | 0.2 | 0.3 | 0.4 | |
20 | 0.6 | 0.9 | 0.9 | 0.2 | 0.4 | 0.4 | |
180 | 10 | 0.4 | 1.1 | 1.1 | 0.2 | 0.5 | 0.5 |
12 | 0.6 | 1.0 | 1.2 | 0.3 | 0.5 | 0.6 | |
14 | 0.4 | 1.3 | 1.3 | 0.2 | 0.6 | 0.7 | |
16 | 0.8 | 0.9 | 1.3 | 0.3 | 0.4 | 0.5 | |
20 | 0.8 | 1.4 | 1.4 | 0.2 | 0.5 | 0.8 | |
220 | 10 | 0.6 | 0.9 | 1.1 | 0.3 | 0.3 | 0.5 |
12 | 0.6 | 1.0 | 1.0 | 0.2 | 0.3 | 0.4 | |
14 | 0.6 | 1.0 | 1.0 | 0.2 | 0.3 | 0.5 | |
16 | 0.7 | 1.0 | 1.1 | 0.3 | 0.3 | 0.5 | |
20 | 0.9 | 0.8 | 0.9 | 0.3 | 0.3 | 0.5 | |
270 | 10 | 0.6 | 0.8 | 0.8 | 0.2 | 0.3 | 0.4 |
12 | 0.5 | 0.7 | 0.8 | 0.2 | 0.3 | 0.3 | |
14 | 0.9 | 0.9 | 0.9 | 0.3 | 0.3 | 0.4 | |
16 | 0.7 | 0.6 | 0.8 | 0.2 | 0.2 | 0.3 | |
20 | 1.2 | 0.9 | 1.2 | 0.4 | 0.3 | 0.5 | |
315 | 10 | 0.6 | 0.6 | 0.8 | 0.2 | 0.2 | 0.3 |
12 | 0.8 | 0.8 | 0.9 | 0.3 | 0.3 | 0.5 | |
14 | 1.0 | 1.6 | 1.8 | 0.3 | 0.7 | 0.9 | |
16 | 1.4 | 1.6 | 1.6 | 0.7 | 0.6 | 1.0 | |
20 | 0.8 | 1.2 | 1.3 | 0.3 | 0.5 | 0.6 | |
330 | 10 | 0.6 | 0.6 | 0.6 | 0.2 | 0.2 | 0.3 |
12 | 0.8 | 0.7 | 0.8 | 0.3 | 0.3 | 0.4 | |
14 | 0.8 | 1.1 | 1.1 | 0.2 | 0.5 | 0.6 | |
16 | 0.7 | 1.0 | 1.1 | 0.3 | 0.4 | 0.6 | |
20 | 0.9 | 1.2 | 1.3 | 0.3 | 0.5 | 0.7 |
Patient # | Fx # | Treatment Field Gantry Angle (°) | Average Position Deviations (mm) | CP 5 mm | CP 10 mm | CP 15 mm | ||
---|---|---|---|---|---|---|---|---|
1 | 1 | 180 | 1.0 | −6.4 | 6.7 | 18% | 100% | 100% |
270 | −1.2 | −2.6 | 3.2 | 75% | 100% | 100% | ||
2 | 180 | 0.4 | −4.2 | 4.6 | 57% | 100% | 100% | |
270 | −1.2 | −2.6 | 3.3 | 88% | 100% | 100% | ||
2 | 1 | 180 | −2.6 | 7.3 | 7.9 | 0% | 97% | 100% |
210 | 3.6 | −3.2 | 4.9 | 61% | 100% | 100% | ||
2 | 180 | −1.8 | 7.1 | 7.5 | 0% | 88% | 100% | |
210 | 4.5 | −4.2 | 6.1 | 0% | 100% | 100% | ||
3 | 1 | 20 | 3.2 | −6.3 | 7.2 | 0% | 100% | 100% |
60 | −0.2 | −7.7 | 7.7 | 8% | 84% | 100% | ||
120 | 0.4 | 0.6 | 1.2 | 100% | 100% | 100% | ||
220 | −0.3 | 7.6 | 7.6 | 0% | 97% | 100% | ||
270 | −0.6 | 0.3 | 3.9 | 69% | 100% | 100% | ||
2 | 20 | 1.9 | 3.2 | 3.8 | 82% | 100% | 100% | |
60 | 1.6 | 1.6 | 3.1 | 94% | 100% | 100% | ||
120 | 0.3 | −0.5 | 0.7 | 100% | 100% | 100% | ||
220 | −0.3 | −2.7 | 3.8 | 65% | 100% | 100% | ||
270 | −2.0 | 0.7 | 3.3 | 100% | 100% | 100% | ||
3 | 20 | −1.7 | −0.4 | 2.1 | 100% | 100% | 100% | |
60 | 0.0 | −8.4 | 8.4 | 4% | 76% | 100% | ||
120 | −1.0 | 3.3 | 3.8 | 66% | 100% | 100% | ||
220 | −0.8 | 6.9 | 7.1 | 12% | 95% | 100% | ||
270 | 1.7 | −0.7 | 4.0 | 73% | 100% | 100% | ||
4 | 1 | 80 | 1.0 | 9.8 | 9.9 | 80% | 100% | 100% |
115 | −3.1 | −5.1 | 6.0 | 28% | 100% | 100% | ||
155 | −8.1 | 0.5 | 8.2 | 100% | 100% | 100% | ||
295 | −4.3 | 0.5 | 4.3 | 76% | 100% | 100% | ||
325 | −5.3 | 0.1 | 5.4 | 17% | 100% | 100% | ||
2 | 80 | 0.7 | −3.3 | 3.4 | 80% | 100% | 100% | |
115 | 0.1 | −1.4 | 2.3 | 98% | 100% | 100% | ||
155 | −2.5 | −0.2 | 2.7 | 100% | 100% | 100% | ||
295 | −0.8 | 1.7 | 1.8 | 100% | 100% | 100% | ||
325 | 1.1 | −1.4 | 2.5 | 92% | 100% | 100% | ||
5 | 1 | 25 | 1.4 | 2.4 | 5.2 | 55% | 100% | 100% |
55 | −0.1 | −2.6 | 3.4 | 78% | 100% | 100% | ||
180 | 3.7 | 0.8 | 4.6 | 59% | 100% | 100% | ||
220 | −2.8 | −0.7 | 3.8 | 71% | 97% | 100% | ||
270 | 0.5 | −8.2 | 9.0 | 0% | 75% | 100% | ||
340 | −0.4 | −2.0 | 3.6 | 81% | 100% | 100% | ||
2 | 25 | −2.6 | 6.8 | 8.4 | 1% | 85% | 100% | |
55 | 4.5 | −3.8 | 7.0 | 20% | 92% | 100% | ||
180 | −2.5 | −6.4 | 7.5 | 20% | 90% | 100% | ||
270 | −6.1 | −8.2 | 10.3 | 2% | 43% | 98% | ||
340 | 0.7 | 2.5 | 3.9 | 80% | 100% | 100% | ||
3 | 25 | 1.3 | 6.3 | 7.1 | 2% | 97% | 100% | |
55 | 4.8 | −7.4 | 9.4 | 2% | 67% | 100% | ||
180 | 5.3 | −0.6 | 5.5 | 43% | 100% | 100% | ||
220 | −1.6 | −5.1 | 6.1 | 44% | 86% | 99% | ||
270 | 6.8 | −5.8 | 9.6 | 4% | 54% | 100% |
References
- Seppenwoolde, Y.; Shirato, H.; Kitamura, K.; Shimizu, S.; van Herk, M.; Lebesque, J.V.; Miyasaka, K. Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 822–834. [Google Scholar] [CrossRef]
- Shirato, H.; Suzuki, K.; Sharp, G.C.; Fujita, K.; Onimaru, R.; Fujino, M.; Kato, N.; Osaka, Y.; Kinoshita, R.; Taguchi, H.; et al. Speed and amplitude of lung tumor motion precisely detected in four-dimensional setup and in real-time tumor-tracking radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.B. Radiotherapy of mobile tumors. Semin. Radiat. Oncol. 2006, 16, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.J. Tracking moving organs in real time. Semin. Radiat. Oncol. 2004, 14, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Keall, P.J.; Mageras, G.S.; Balter, J.M.; Emery, R.S.; Forster, K.M.; Jiang, S.B.; Kapatoes, J.M.; Low, D.A.; Murphy, M.J.; Murray, B.R.; et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys. 2006, 33, 3874–3900. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Richter, A.; Baier, K.; Wilbert, J.; Guckenberger, M.; Flentje, M. Tracking moving objects with megavoltage portal imaging: A feasibility study. Med. Phys. 2006, 33, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Arimura, H.; Egashira, Y.; Shioyama, Y.; Nakamura, K.; Yoshidome, S.; Anai, S.; Nomoto, S.; Honda, H.; Toyofuku, F.; Higashida, Y.; et al. Computerized method for estimation of the location of a lung tumor on EPID cine images without implanted markers in stereotactic body radiotherapy. Phys. Med. Biol. 2009, 54, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Poels, K.; Verellen, D.; Van de Vondel, I.; El Mazghari, R.; Depuydt, T.; De Ridder, M. Fiducial marker and marker-less soft-tissue detection using fast MV fluoroscopy on a new generation EPID: Investigating the influence of pulsing artifacts and artifact suppression techniques. Med. Phys. 2014, 41, 101911. [Google Scholar] [CrossRef] [PubMed]
- Rottmann, J.; Aristophanous, M.; Chen, A.; Court, L.; Berbeco, R. A multi-region algorithm for markerless beam’s-eye view lung tumor tracking. Phys. Med. Biol. 2010, 55, 5585–5598. [Google Scholar] [CrossRef] [PubMed]
- Rottmann, J.; Keall, P.; Yue, Y.; Berbeco, R. Real-Time Markerless Tumor Tracking with MV Imaging and a Dynamic Multi-Leaf Collimator (DMLC). Med. Phys. 2012, 39, 3890. [Google Scholar] [CrossRef]
- Bryant, J.H.; Rottmann, J.; Lewis, J.H.; Keall, P.J.; Berbeco, R.I. Registration of Clinical Volumes to Beams-Eye-View Images for Real-Time Tracking. Med. Phys. 2013, 40, 471. [Google Scholar] [CrossRef]
- Rottmann, J.; Berbeco, R. Predictor Model Training for Real-Time Motion Management of Lung Tumors. Med. Phys. 2013, 40, 410–411. [Google Scholar] [CrossRef]
- Rottmann, J.; Keall, P.; Berbeco, R. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery. Med. Phys. 2013, 40, 091713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, P.; Li, R.J.; Mak, R.H.; Rottmann, J.; Bryant, J.H.; Williams, C.L. An initial study on the estimation of time-varying volumetric treatment images and 3D tumor localization from single MV cine EPID images. Med. Phys. 2014, 41, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.; Rottmann, J.; Berbeco, R. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking. Med. Phys. 2014, 41, 061702. [Google Scholar] [CrossRef] [Green Version]
- Yip, S.; Rottmann, I.; Chen, H.; Morf, D.; Fueglistaller, R.; Star-Lack, J. Combination of Multiple EPID Imager Layers Improves Image Quality and Tracking Performance of Low Contrast Objects. Med. Phys. 2015, 42, 3742. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Homma, N.; Ichiji, K.; Takai, Y.; Yoshizawa, M. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study. Med. Phys. 2015, 42, 2510–2523. [Google Scholar] [CrossRef] [PubMed]
- Rozario, T.; Bereg, S.; Yan, Y.L.; Chiu, T.C.; Liu, H.H.; Kearney, V. An accurate algorithm to match imperfectly matched images for lung tumor detection without markers. J. Appl. Clin. Med. Phys. 2015, 16, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuiderveld, K. Contrast Limited Adaptive Histogram Equalization; Heckbert, P.S., Ed.; Morgan Kaufmann: Burlington, MA, USA, 1994; pp. 474–485. [Google Scholar]
- Yang, Y.; Zhong, Z.C.; Guo, X.H.; Wang, J.; Anderson, J.; Solberg, T. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, E749–E756. [Google Scholar] [CrossRef] [PubMed]
Patient # | GTV Size (cm3) | Tumor Location | Abdomen Compression | Motion Range (mm) |
---|---|---|---|---|
1 | 5.1 | right upper lobe | No | 13.8 |
2 | 32.0 | left upper lobe | No | 6.1 |
3 | 17.6 | left lower lobe | Yes | 8.5 |
4 | 86.4 | left lower lobe | Yes | 3.7 |
5 | 93.7 | left upper lobe | Yes | 15.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rozario, T.; Chiu, T.D.; Chen, M.; Jia, X.; Lu, W.; Bereg, S.; Mao, W. A Novel Markerless Lung Tumor-Tracking Method Using Treatment MV Beam Imaging. Appl. Sci. 2018, 8, 2525. https://doi.org/10.3390/app8122525
Rozario T, Chiu TD, Chen M, Jia X, Lu W, Bereg S, Mao W. A Novel Markerless Lung Tumor-Tracking Method Using Treatment MV Beam Imaging. Applied Sciences. 2018; 8(12):2525. https://doi.org/10.3390/app8122525
Chicago/Turabian StyleRozario, Timothy, Tsuicheng D. Chiu, Mingli Chen, Xun Jia, Weiguo Lu, Sergey Bereg, and Weihua Mao. 2018. "A Novel Markerless Lung Tumor-Tracking Method Using Treatment MV Beam Imaging" Applied Sciences 8, no. 12: 2525. https://doi.org/10.3390/app8122525
APA StyleRozario, T., Chiu, T. D., Chen, M., Jia, X., Lu, W., Bereg, S., & Mao, W. (2018). A Novel Markerless Lung Tumor-Tracking Method Using Treatment MV Beam Imaging. Applied Sciences, 8(12), 2525. https://doi.org/10.3390/app8122525