Gold Nanotriangles as Selective Catalysts for Cyclohexanol and Cyclohexanone Production
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Carneiro, J.T.; Savenije, T.J.; Moulijn, J.A.; Mul, G. The effect of Au on TiO2 catalyzed selective photocatalytic oxidation of cyclohexane. J. Photochem. Photobiol. 2011, 217, 326–332. [Google Scholar] [CrossRef]
- Hereijgers, B.P.C.; Weckhuysen, B.M. An attempt to selectively oxidize methane over supported gold catalysts. J. Catal. 2010, 270, 16–25. [Google Scholar] [CrossRef]
- Alshammari, A.; Koeckritz, A.; Kalevaru, V.N.; Bagabas, A.; Martin, A. Significant formation of adipic acid by direct oxidation of cyclohexane using supported nano-gold catalysts. ChemCatChem 2012, 4, 1330–1336. [Google Scholar] [CrossRef]
- Conte, M.; Liu, X.; Murphy, D.M.; Whiston, K.; Hutchings, G.J. Cyclohexane oxidation using Au/MgO: An investigation of the reaction mechanism. Phys. Chem. Chem. Phys. 2012, 14, 16279–16285. [Google Scholar] [CrossRef]
- Liu, X.; Conte, M.; Sankar, M.; He, Q.; Murphy, D.M.; Morgan, D.; Jenkins, R.L.; Knight, D.; Whiston, K.; Kiely, C.J.; Hutchings, G.J. Liquid phase oxidation of cyclohexane using bimetallic Au-Pd/MgO catalysts. Appl. Catal. 2015, 504, 373–380. [Google Scholar] [CrossRef]
- Martins, L.M.D.R.S.; Carabineiro, S.A.C.; Wang, J.; Rocha, B.G.M.; Maldonado-Hódar, F.J.; Pombeiro, A.J.L. Supported gold nanoparticles as reusable catalysts for oxidation reactions of industrial significance. ChemCatChem 2017, 9, 1211–1221. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.M.D.R.S.; Carabineiro, S.A.C.; Figueiredo, J.L.; Pombeiro, A.J.L. Gold nanoparticles deposited on surface modified carbon xerogels as reusable catalysts for cyclohexane C-H activation towards CO and water. Molecules 2017, 22, 603. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Martins, L.M.D.R.S.; Carabineiro, S.A.C.; Figueiredo, J.L.; Pombeiro, A.J.L. Gold nanoparticles deposited on surface modified carbon materials as reusable catalysts for hydrocarboxylation of cyclohexane. Appl. Catal. A Gen. 2017, 547, 124–131. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Martins, L.M.D.R.S.; Avalos-Borja, M.; Buijnsters, J.G.; Pombeiro, A.J.L.; Figueiredo, J.L. Gold nanoparticles supported on carbon materials for cyclohexane oxidation with hydrogen peroxide. Appl. Catal. 2013, 467, 279–290. [Google Scholar] [CrossRef]
- Xu, Y.J.; Landon, P.; Enache, D.; Carley, A.F.; Roberts, M.W.; Hutchings, G.J. Selective conversion of cyclohexane to cyclohexanol and cyclohexanone using a gold catalyst under mild conditions. Catal. Lett. 2005, 101, 175–179. [Google Scholar] [CrossRef]
- Hutchings, G.J.; Carrettin, S.; Landon, P.; Edwards, J.K.; Enache, D.; Knight, D.W.; Xu, Y.-J.; Carley, A.F. New approaches to designing selective oxidation catalysts: Au/C a versatile catalyst. Top. Catal. 2006, 38, 223–230. [Google Scholar] [CrossRef]
- Mayani, V.J.; Mayani, S.V.; Kim, S.W. Palladium, Gold, and Gold–Palladium Nanoparticle-Supported Carbon Materials for Cyclohexane Oxidation. Chem. Eng. Commun. 2015, 203, 539–547. [Google Scholar] [CrossRef]
- Sun, Z.G.; Li, G.; Liu, L.P.; Liu, H.O. Au nanoparticles supported on Cr-based metal-organic framework as bimetallic catalyst for selective oxidation of cyclohexane to cyclohexanone and cyclohexanol. Catal. Commun. 2012, 27, 200–205. [Google Scholar] [CrossRef]
- Saxena, S.; Singh, R.; Pala, R.G.S.; Sivakumar, S. Sinter-resistant gold nanoparticles encapsulated by zeolite nanoshell for oxidation of cyclohexane. RSC Adv. 2016, 6, 8015–8020. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Zhu, M.; Chen, J.; Yang, Y.; Tang, Y.; Cai, Z.; Shen, Y.; He, C. In Fundamental of Chemical Engineering; Cao, Z., Sun, L., Cao, X.Q., He, Y.H., Eds.; TransTec Publications Inc.: Zurich, Switzerland, 2011; Volume 233–235, pp. 254–259. [Google Scholar]
- Xu, L.-X.; He, C.-H.; Zhu, M.-Q.; Fang, S. A highly active Au/Al2O3 catalyst for cyclohexane oxidation using molecular oxygen. Catal. Lett. 2007, 114, 202–205. [Google Scholar] [CrossRef]
- Hosseini-Monfared, H.; Meyer, H.; Janiak, C. Dioxygen oxidation of 1-phenylethanol with gold nanoparticles and N-hydroxyphthalimide in ionic liquid. J. Mol. Catal. 2013, 372, 72–78. [Google Scholar] [CrossRef]
- Elvers, B. Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed.; Ullmann, F., Hawkins, S., Schula, G., Gerhartz, W., Russey, W.E., Elvers, B., Eds.; Wiley-VCH: Weinheim, Germany, 2016; Volume 11, pp. 41–49. [Google Scholar]
- Adipic acid (ADPA): 2016 World Market Outlook and Forecast up to 2020; Merchant Research and Consulting: Birmingham, UK, 2016.
- Kulikova, V.S.; Shestakov, A.F. Functionalization of alkanes by gold nanoparticles stabilized by 1-dodecanethiol in organic media. Russ. J. Phys. Chem. B 2007, 1, 507–511. [Google Scholar] [CrossRef]
- Sun, Y.G.; Xia, Y.N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002, 298, 2176–2179. [Google Scholar] [CrossRef]
- Priecel, P.; Salami, H.A.; Padilla, R.H.; Zhong, Z.Y.; Lopez-Sanchez, J.A. Anisotropic gold nanoparticles: Preparation and applications in catalysis. Chin. J. Catal. 2016, 37, 1619–1650. [Google Scholar] [CrossRef]
- Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J.J.; Langer, J.; Liz-Marzán, L.M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 2014, 8, 5833–5842. [Google Scholar] [CrossRef]
- Weissermel, K.; Arpe, H.J. Industrial Organic Chemistry, 2nd ed.; Weissermel, K., Arpe, H.J., Eds.; Wiley-VCH: Weinheim, Germany, 1993; ISBN 3-527-26995-9. [Google Scholar]
- Shul’pin, G.B.; Nizova, G.V. Formation of alkyl peroxides in oxidation of alkanes by H2O2 catalyzed by transition metal complexes. React. Kinet. Catal. Lett. 1992, 48, 333–338. [Google Scholar] [CrossRef]
- Shul’pin, G.B.; Matthes, M.G.; Romakh, V.B.; Barbosa, M.I.F.; Aoyagi, J.L.T.; Mandelli, D. Oxidations by the system ‘hydrogen peroxide-[Mn2L2O3][PF6]2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane)-carboxylic acid’. Part 10: Co-catalytic effect of different carboxylic acids in the oxidation of cyclohexane, cyclohexanol, and acetone. Tetrahedron 2008, 64, 2143–2152. [Google Scholar] [CrossRef]
- Martins, L.M.D.R.S.; Pombeiro, A.J.L. Water-soluble C-scorpionate complexes: Catalytic and biological applications. Eur. J. Inorg. Chem. 2016, 2236–2252. [Google Scholar] [CrossRef]
- Sabbatini, A.; Martins, L.M.D.R.S.; Mahmudov, K.T.; Kopylovich, M.N.; Drew, M.G.B.; Pettinari, C.; Pombeiro, A.J.L. Microwave-assisted and solvent-free peroxidative oxidation of 1-phenylethanol to acetophenone with a Cu(II)-TEMPO catalytic system. Cat. Com. 2014, 48, 4048–4058. [Google Scholar] [CrossRef]
- Sutradhar, M.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Liu, C.-M.; Pombeiro, A.J.L. Trinuclear Cu(II) structural isomers: Coordination, magnetism, electrochemistry and catalytic activity toward oxidation of alkanes. Eur. J. Inorg. Chem. 2015, 3959–3969. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Kopylovich, M.N.; Sabbatini, A.; Drew, M.G.B.; Martins, L.M.D.R.S.; Pettinari, C.; Pombeiro, A.J.L. Cooperative metal-ligand assisted E/Z isomerisation and cyano-groups activation at CuII and CoII complexes of arylhydrazones of active methylene nitriles. Inorg. Chem. 2014, 53, 9946–9958. [Google Scholar] [CrossRef]
- Timokhin, I.; Pettinari, C.; Marchetti, F.; Pettinari, R.; Condello, F.; Galli, S.; Alegria, E.C.B.A.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Novel coordination polymers with (pyrazolato)-based tectons: Catalytic activity in the peroxidative oxidation of alcohols and cyclohexane. Cryst. Growth Des. 2015, 15, 2303–2317. [Google Scholar] [CrossRef]
- Kopylovich, M.N.; Mahmudov, K.T.; Silva, M.F.C.G.; Martins, L.M.D.R.S.; Kuznetsov, M.L.; Silva, T.F.S.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Trends in properties of para-substituted 3-(phenylhydrazo)pentane-2,4-diones. J. Phys. Org. Chem. 2011, 24, 764–773. [Google Scholar] [CrossRef]
- Bäckwall, J.-E. (Ed.) Modern Oxidation Methods; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Ullmann’s Encyclopedia of Industrial Chemistry, 6th ed.; Wiley-VCH: Weinheim, Germany, 2016; Volume 11, pp. 41–49.
- Martins, L.M.D.R.S.; Pombeiro, A.J.L. Tris(pyrazol-1yl)methane metal complexes for catalytic mild oxidative functionalizations of alkanes, alkenes and ketones. Coord. Chem. Rev. 2014, 265, 74–88. [Google Scholar] [CrossRef]
Entry | Catalyst Amount/µmol | T/°C | Time/h | Additive | Conversion/% b | Yield/% c | Selectivity/% d | Total TON e | Total TOF/h−1 f | ||
---|---|---|---|---|---|---|---|---|---|---|---|
CyO (K) | CyOH (A) | Total | |||||||||
1 | 5 | 50 | 3 | --- | 3.9 | 3.5 | --- | 3.5 | 90 | 35 | 12 |
2 | 10 | 50 | 3 | --- | 6.3 | 5.7 | --- | 5.7 | 90 | 29 | 10 |
3 | 20 | 50 | 3 | --- | 13.9 | 13.1 | --- | 13.1 | 94 | 33 | 11 |
4 | 30 | 50 | 3 | --- | 14.2 | 14.2 | --- | 14.2 | 100 | 24 | 8 |
5 | 5 | 50 | 3 | HNO3 | 1.9 | 1.7 | --- | 1.7 | 89 | 17 | 6 |
6 | 10 | 50 | 3 | HNO3 | 3.4 | 3.1 | --- | 3.1 | 91 | 16 | 5 |
7 | 20 | 50 | 3 | HNO3 | 12.8 | 10.3 | 1.9 | 12.2 | 95 | 31 | 10 |
8 | 20 | 50 | 3 | H2SO4 | 3.5 | 3.3 | --- | 3.3 | 94 | 8 | 3 |
9 | 20 | 30 | 3 | --- | 5.4 | 4.7 | --- | 4.7 | 87 | 12 | 4 |
10 | 20 | 70 | 3 | --- | 14.2 | 12.3 | 1.6 | 13.9 | 98 | 35 | 12 |
11 | 20 | 50 | 1 | --- | 2.6 | 2.5 | --- | 2.5 | 96 | 6 | 6 |
12 | 20 | 50 | 6 | --- | 14.9 | 11.3 | 3.1 | 14.4 | 97 | 36 | 6 |
13 | --- | 50 | 3 | --- | 1.5 | 1.2 | --- | 1.2 | 80 | --- | --- |
14 g | 20 | 50 | 3 | --- | 6.9 | 6.7 | --- | 6.7 | 97 | 17 | 6 |
15 g | 20 | 50 | 3 | HNO3 | 6.2 | 5.9 | --- | 5.9 | 95 | 15 | 5 |
16 h | 20 | 50 | 3 | --- | --- | --- | --- | --- | --- | --- | --- |
Catalyst Amount/µmol | Au NTs Surface/Volume Ratio/×10−4 nm−1 μmol−1 |
---|---|
5 | 50 |
10 | 25 |
20 | 13 |
30 | 8 |
MW-Reaction Conditions | Pressure/atm |
---|---|
Control (without catalyst) | 1.3 |
TBHP | 5.3 |
H2O2 | 5.6 |
air | 1.0 |
Entry | Catalyst Amount/µmol | Additive | Yield/% b | Total TON c | Conversion/% | ||
---|---|---|---|---|---|---|---|
CyO (K) | CyOH (A) | Total | |||||
1 | 5 | --- | 0.2 | --- | 0.2 | 2 | 0.5 |
2 | 10 | --- | 0.3 | --- | 0.3 | 2 | 0.6 |
3 | 20 | --- | 0.5 | --- | 0.5 | 1 | 0.9 |
4 | 30 | --- | 2.0 | --- | 2.0 | 3 | 2 |
5 | 5 | HNO3 | 0.6 | --- | 0.6 | 6 | 0.8 |
6 d | 20 | --- | 0.2 | --- | 0.2 | 1 | 0.3 |
7 d | 20 | HNO3 | 0.3 | --- | 0.3 | 1 | 0.3 |
8 e | 20 | --- | --- | --- | --- | --- | --- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matias, I.A.S.; Ribeiro, A.P.C.; Oliveira-Silva, R.P.; Prazeres, D.M.F.; Martins, L.M.D.R.S. Gold Nanotriangles as Selective Catalysts for Cyclohexanol and Cyclohexanone Production. Appl. Sci. 2018, 8, 2655. https://doi.org/10.3390/app8122655
Matias IAS, Ribeiro APC, Oliveira-Silva RP, Prazeres DMF, Martins LMDRS. Gold Nanotriangles as Selective Catalysts for Cyclohexanol and Cyclohexanone Production. Applied Sciences. 2018; 8(12):2655. https://doi.org/10.3390/app8122655
Chicago/Turabian StyleMatias, Inês A. S., A. P. C. Ribeiro, Rui P. Oliveira-Silva, Duarte M. F. Prazeres, and Luísa M. D. R. S. Martins. 2018. "Gold Nanotriangles as Selective Catalysts for Cyclohexanol and Cyclohexanone Production" Applied Sciences 8, no. 12: 2655. https://doi.org/10.3390/app8122655
APA StyleMatias, I. A. S., Ribeiro, A. P. C., Oliveira-Silva, R. P., Prazeres, D. M. F., & Martins, L. M. D. R. S. (2018). Gold Nanotriangles as Selective Catalysts for Cyclohexanol and Cyclohexanone Production. Applied Sciences, 8(12), 2655. https://doi.org/10.3390/app8122655