Estimation of Association between Healthcare System Efficiency and Policy Factors for Public Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. DEA Bootstrap Approach
2.2. Input/Output Selection
2.3. Five Types of Healthcare System
2.4. Mann–Whitney U Test and Tobit Regression Model
2.5. Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Marten, R.; McIntyre, D.; Travassos, C.; Shishkin, S.; Longde, W.; Reddy, S.; Vega, J. An assessment of progress towards universal health coverage in Brazil, Russia, India, China, and South Africa (BRICS). Lancet 2014, 384, 2164–2171. [Google Scholar] [CrossRef]
- Saltman, R.B. Decentralization, re-centralization and future European health policy. Eur. J. Public Health 2008, 18, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Victoor, A.; Delnoij, D.M.; Friele, R.D.; Rademakers, J.J. Determinants of patient choice of healthcare providers: A scoping review. BMC Health Serv. Res. 2012, 12, 272. [Google Scholar] [CrossRef] [PubMed]
- Fotaki, M. Patient choice in healthcare in England and Sweden: From quasi-market and back to market? A comparative analysis of failure in unlearning. Public Adm. 2007, 85, 1059–1075. [Google Scholar] [CrossRef]
- Horton, R.; Das, P. Universal health coverage: Not why, what, or when—But how? Lancet 2015, 385, 1156–1157. [Google Scholar] [CrossRef]
- Vuong, Q.H. Sociodemographic factors influencing Vietnamese patient satisfaction with healthcare services and some meaningful empirical thresholds. Iran. J. Public Health 2018, 47, 119–126. [Google Scholar]
- Murray, C.J.L.; Frenk, J. A WHO Framework for Health System Performance Assessment; Global Programme on Evidence for Health Policy Discussion Paper No. 6; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. Ser. A 1957, 120, 253–278. [Google Scholar] [CrossRef]
- Evans, D.B.; Tandon, A.; Murray, C.J.; Lauer, J.A. The comparative efficiency of national health systems in producing health: An analysis of 191 countries. World Health Organ. 2000, 29, 1–36. [Google Scholar]
- Hollingsworth, B. The measurement of efficiency and productivity of health care delivery. Health Econ. 2008, 17, 1107–1128. [Google Scholar] [CrossRef]
- Evans, D.B.; Tandon, A.; Murray, C.J.; Lauer, J.A. Comparative efficiency of national health systems: Cross national econometric analysis. BMJ 2001, 323, 307–310. [Google Scholar] [CrossRef]
- Gravelle, H.; Jacobs, R.; Jones, A.M.; Street, A. Comparing the efficiency of national health systems: A sensitivity analysis of the WHO approach. Appl. Health Econ. Health Policy 2003, 2, 141–148. [Google Scholar] [PubMed]
- Greene, W. Distinguishing between heterogeneity and inefficiency: Stochastic frontier analysis of the world health organization’s panel data on national health care systems. Health Econ. 2004, 13, 959–980. [Google Scholar] [CrossRef] [PubMed]
- Retzlaff-Roberts, D.; Chang, C.F.; Rubin, R.M. Technical efficiency in the use of health care resources: A comparison of OECD countries. Health Policy 2004, 69, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Bhat, V.N. Institutional arrangements and efficiency of health care delivery systems. Eur. J. Health Econ. 2005, 6, 215–222. [Google Scholar] [CrossRef]
- Wranik, D. Healthcare policy tools as determinants of health-system efficiency: Evidence from the OECD. Health Econ. Policy Law 2012, 7, 197–226. [Google Scholar] [CrossRef] [PubMed]
- Hadad, S.; Hadad, Y.; Simon-Tuval, T. Determinants of healthcare system’s efficiency in OECD countries. Eur. J. Health Econ. 2013, 14, 253–265. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Estimation and inference in two-stage, semi-parametric models of production processes. J. Econom. 2007, 136, 31–64. [Google Scholar] [CrossRef] [Green Version]
- Dyson, R.G.; Allen, R.; Camanho, A.S.; Podinovski, V.V.; Sarrico, C.S.; Shale, E.A. Pitfalls and protocols in dea. Eur. J. Oper. Res. 2001, 132, 245–259. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. A general methodology for bootstrapping in non-parametric frontier models. J. Appl. Stat. 2000, 27, 779–802. [Google Scholar] [CrossRef]
- Ruggiero, J. Non-discretionary inputs in data envelopment analysis. Eur. J. Oper. Res. 1998, 111, 461–469. [Google Scholar] [CrossRef]
- Asandului, L.; Roman, M.; Fatulescu, P. The efficiency of healthcare systems in Europe: A data envelopment analysis approach. Procedia Econ. Financ. 2014, 10, 261–268. [Google Scholar] [CrossRef]
- Vuong, Q.H.; Ho, T.M.; Nguyen, H.K.; Vuong, T.T. Healthcare consumers’ sensitivity to costs: A reflection on behavioural economics from an emerging market. Palgrave Commun. 2018, 4, 70. [Google Scholar] [CrossRef]
- Crémieux, P.Y.; Ouellette, P.; Pilon, C. Health care spending as determinants of health outcomes. Health Econ. 1999, 8, 627–639. [Google Scholar] [CrossRef]
- Nixon, J.; Ulmann, P. The relationship between health care expenditure and health outcomes. Eur. J. Health Econ. 2006, 7, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Trzeciak, S.; Rivers, E. Emergency department overcrowding in the United States: An emerging threat to patient safety and public health. Emerg. Med. J. 2003, 20, 402–405. [Google Scholar] [CrossRef]
- Afonso, A.; St Aubyn, M. Non-Parametric Approaches to Education and Health Expenditure Efficiency in OECD Countries; OECD: Paris, France, 2004. [Google Scholar]
- Böhm, K.; Schmid, A.; Götze, R.; Landwehr, C.; Rothgang, H. Five types of OECD healthcare systems: Empirical results of a deductive classification. Health Policy 2013, 113, 258–269. [Google Scholar] [CrossRef]
- OECD. The Reform of Health Care Systems; Organization of Economic Cooperation and Development: Paris, France, 1994. [Google Scholar]
- Joumard, I.; André, C.; Nicq, C. Health Care Systems: Efficiency and Institutions; OECD Publishing: Paris, France, 2010. [Google Scholar]
- Horrace, W.C.; Oaxaca, R.L. Results on the bias and inconsistency of ordinary least squares for the linear probability model. Econ. Lett. 2006, 90, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Anscombe, F. Graphs in statistical analysis. Am. Stat. 1973, 27, 17–21. [Google Scholar]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and cox regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, J. Measurement of healthcare system efficiency in OECD countries. Quant. Methods Econ. 2015, 16, 23–32. [Google Scholar]
- Wagstaff, A. Social health insurance reexamined. Health Econ. 2010, 19, 503–517. [Google Scholar]
- Normand, C.; Busse, R. Social health insurance financing. In Funding Health Care: Options for Europe; Open University Press: Philadelphia, PA, USA, 2002; Volume 59. [Google Scholar]
- Pearson, M.; Colombo, F.; Murakami, Y. Universal Health Coverage and Health Outcomes: Final Report; OECD Publishing: Paris, France, 2016. [Google Scholar]
- Cutler, D.M.; Reber, S.J. Paying for health insurance: The trade-off between competition and adverse selection. Q. J. Econ. 1998, 113, 433–466. [Google Scholar] [CrossRef]
- Botti, S.; Iyengar, S.S. The dark side of choice: When choice impairs social welfare. J. Public Policy Mark. 2006, 25, 24–38. [Google Scholar] [CrossRef]
- Hanoch, Y.; Rice, T.; Cummings, J.; Wood, S. How much choice is too much? The case of the Medicare prescription drug benefit. Health Serv. Res. 2009, 44, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Dave, D. Health care: Multi-payer or single-payer? East. Econ. J. 2017, 43, 180–182. [Google Scholar] [CrossRef]
- Hussey, P.; Anderson, G.F. A comparison of single-and multi-payer health insurance systems and options for reform. Health Policy 2003, 66, 215–228. [Google Scholar] [CrossRef]
- Docteur, E. Towards High-Performing Health Systems: The OECD Health Project; OECD: Paris, France, 2004. [Google Scholar]
- Woolhandler, S.; Campbell, T.; Himmelstein, D.U. Costs of health care administration in the United States and Canada. N. Engl. J. Med. 2003, 349, 768–775. [Google Scholar] [CrossRef]
- Cutler, D.; Wikler, E.; Basch, P. Reducing administrative costs and improving the health care system. N. Engl. J. Med. 2012, 367, 1875–1878. [Google Scholar] [CrossRef]
- Woolhandler, S.; Himmelstein, D.U. The deteriorating administrative efficiency of the US health care system. N. Engl. J. Med. 1991, 324, 1253–1258. [Google Scholar] [CrossRef]
- Costa-Font, J.; Greer, S. Federalism and Decentralization in European Health and Social Care; Springer: Berlin, Germany, 2016. [Google Scholar]
- Jacobs, R.; Smith, P.C.; Street, A. Measuring Efficiency in Health Care: Analytic Techniques and Health Policy; Cambridge University Press: Cambridge, UK, 2006; ISBN 1139456873. [Google Scholar]
- Mosca, I. Is decentralisation the real solution? A three country study. Health Policy 2006, 77, 113–120. [Google Scholar] [CrossRef]
- Darras, C. Local health services: Some lessons from their evolution in Bolivia. Trop. Med. Int. Health 1997, 2, 356–362. [Google Scholar] [CrossRef]
- Visvizi, A.; Lytras, M.D.; Damiani, E.; Mathkour, H. Policy making for smart cities: Innovation and social inclusive economic growth for sustainability. J. Sci. Technol. Policy Manag. 2018, 9, 126–133. [Google Scholar] [CrossRef]
- Spruit, M.; Lytras, M. Applied Data Science in Patient-centric Healthcare. Telematics Inform. 2018, 35, 643–653. [Google Scholar] [CrossRef]
- Lytras, M.D.; Visvizi, A. Who Uses Smart City Services and What to Make of It: Toward Interdisciplinary Smart Cities Research. Sustainability 2018, 10, 1998. [Google Scholar] [CrossRef]
Type | Regulation | Financing | Provision | Countries |
---|---|---|---|---|
NHS | State | State | State | Denmark, Finland, Iceland, Norway, Sweden, Portugal, Spain, UK |
NHI | State | State | Private | Australia, Canada, Ireland, New Zealand, Italy |
SHI | Societal | Societal | Private | Austria, Germany, Luxembourg, Switzerland |
PHS | Private | Private | Private | USA |
ESHI | State | Societal | Private | Belgium, Estonia, France, Czech Republic, Hungary, the Netherlands, Poland, Slovakia, Israel, Japan, Korea |
DMU | Score (Bias-Corrected) | Bias | Score (Original) | SD |
---|---|---|---|---|
Luxembourg | 0.9249 | 0.0505 | 0.9754 | 0.0361 |
Greece | 0.9142 | 0.0858 | 1.0000 | 0.0597 |
Israel | 0.9140 | 0.0468 | 0.9608 | 0.0315 |
Estonia | 0.9135 | 0.0865 | 1.0000 | 0.0712 |
France | 0.9094 | 0.0706 | 0.9799 | 0.0700 |
Portugal | 0.9093 | 0.0536 | 0.9629 | 0.0382 |
Latvia | 0.8948 | 0.1052 | 1.0000 | 0.0769 |
Ireland | 0.8853 | 0.0448 | 0.9301 | 0.0299 |
Iceland | 0.8792 | 0.1208 | 1.0000 | 0.1135 |
Poland | 0.8762 | 0.0606 | 0.9368 | 0.0439 |
Sweden | 0.8586 | 0.1414 | 1.0000 | 0.1289 |
Korea | 0.8577 | 0.1423 | 1.0000 | 0.1198 |
Canada | 0.8545 | 0.0489 | 0.9034 | 0.0360 |
Italy | 0.8469 | 0.0749 | 0.9218 | 0.0968 |
Turkey | 0.8321 | 0.1679 | 1.0000 | 0.1600 |
Mexico | 0.8101 | 0.1899 | 1.0000 | 0.2017 |
Chile | 0.7970 | 0.2030 | 1.0000 | 0.2461 |
Denmark | 0.7957 | 0.0353 | 0.8309 | 0.0239 |
New Zealand | 0.7939 | 0.0418 | 0.8357 | 0.0315 |
Spain | 0.7899 | 0.2101 | 1.0000 | 0.2748 |
United Kingdom | 0.7892 | 0.0478 | 0.8370 | 0.0331 |
Slovenia | 0.7863 | 0.2137 | 1.0000 | 0.2710 |
Japan | 0.7824 | 0.2176 | 1.0000 | 0.2816 |
Finland | 0.7786 | 0.0593 | 0.8380 | 0.0653 |
Czech Republic | 0.7593 | 0.0616 | 0.8209 | 0.0657 |
Norway | 0.7139 | 0.0378 | 0.7517 | 0.0347 |
Hungary | 0.7099 | 0.0323 | 0.7423 | 0.0234 |
Switzerland | 0.7029 | 0.0436 | 0.7465 | 0.0423 |
Australia | 0.6973 | 0.0407 | 0.7380 | 0.0313 |
United States | 0.6722 | 0.0499 | 0.7222 | 0.0415 |
Belgium | 0.6189 | 0.0356 | 0.6545 | 0.0257 |
The Netherlands | 0.5926 | 0.0315 | 0.6241 | 0.0221 |
Slovak Republic | 0.5805 | 0.0398 | 0.6203 | 0.0375 |
Austria | 0.4412 | 0.0313 | 0.4725 | 0.0226 |
Germany | 0.4240 | 0.0348 | 0.4589 | 0.0280 |
Type | NHS | NHI | SHI | ESHI |
---|---|---|---|---|
N | 8 | 5 | 4 | 11 |
Efficiency Mean | 0.8143 | 0.8156 | 0.6232 | 0.7740 |
Efficiency SD | 0.0634 | 0.0738 | 0.2381 | 0.1318 |
Policy Variable | Above Median Eff. (n = 13) | Equal/Below Median Eff. (n = 16) | p Value |
---|---|---|---|
User choice of insurers | 0.500 (.877) | 1.938 (2.081) | 0.053 * |
Private Provision | 2.223 (1.501) | 3.069 (1.165) | 0.219 |
Regulation of provider prices | 4.150 (1.126) | 4.081 (.983) | 0.313 |
User information | 0.479 (.836) | 1.538 (1.418) | 0.039 ** |
Regulation of workforce & equipment | 2.850 (1.674) | 2.800 (.991) | 0.617 |
Choice among providers | 4.407 (2.114) | 4.169 (2.033) | 0.271 |
Gatekeeping | 2.071 (2.386) | 3.750 (2.266) | 0.114 |
Budget Constraint | 3.071 (2.057) | 2.563 (2.065) | 0.322 |
Decentralization | 1.193 (1.743) | 2.438 (1.567) | 0.003 *** |
Consistency | 4.386 (1.501) | 4.531 (1.564) | 0.757 |
Variable | Coefficient | Std. Error | z-Statistic | p-Value |
---|---|---|---|---|
Constant | 0.934 | 0.041 | 22.812 | 2 × 10−16 |
UCI | −0.074 | 0.028 | −2.65 | 0.00812 *** |
UI | −0.110 | 0.035 | −3.15 | 0.00165 *** |
DC | −0.064 | 0.030 | −2.16 | 0.03049 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, C. Estimation of Association between Healthcare System Efficiency and Policy Factors for Public Health. Appl. Sci. 2018, 8, 2674. https://doi.org/10.3390/app8122674
Lee S, Kim C. Estimation of Association between Healthcare System Efficiency and Policy Factors for Public Health. Applied Sciences. 2018; 8(12):2674. https://doi.org/10.3390/app8122674
Chicago/Turabian StyleLee, Seunggyu, and Changhee Kim. 2018. "Estimation of Association between Healthcare System Efficiency and Policy Factors for Public Health" Applied Sciences 8, no. 12: 2674. https://doi.org/10.3390/app8122674
APA StyleLee, S., & Kim, C. (2018). Estimation of Association between Healthcare System Efficiency and Policy Factors for Public Health. Applied Sciences, 8(12), 2674. https://doi.org/10.3390/app8122674