Advantages and Limitations to the Use of Optical Measurements to Study Sediment Properties
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Optical Proxies of Properties of Sediment Particles
1.1.1. Volume and Mass Concentration
1.1.2. Size
1.1.3. Composition
1.1.4. Packing
1.2. Particle Dynamics
1.3. An Equation for the Vertical Distribution of an Optical Property
2. Observations
- Beam attenuation cp(650) [m−1] measured by the AC-9 and particulate backscattering coefficient (bbp(650) [m−1] measured by the EcoBB2F provide proxies of particulate concentration (e.g., [5], where higher values associated with higher particle concentrations.
- Exponent of the power-law fits of the particulate beam attenuation γcp [dimensionless] and backscattering γbbp [dimensionless] (cp = cp(λ0)(λ/λ0)−γcp, with an analogous formula for γbbp) provide proxies for size distribution in the finer sizes (e.g., [13]). Lower values are associated with larger size averaged particles. γcp is biased towards the smaller (0.5 to 10 µm) particles in the population [9], and γbbp may be more sensitive to larger particles [15].
- Sauter diameter Ds [µm] is determined from the ratio of LISST measurements of volume and area concentrations, summed over size classes i as Ds = 1.5 ∑Vi/∑Ai and reciprocal of particle density ρa−1 = ∑Vi/cp [m ppm−1 = µm], using the LISST-based cp. Both are proxies for packing: larger values of Ds indicate larger, less-dense particle populations, and larger values of ρa−1 also indicate less-dense particle populations.
- Particulate backscattering ratio bbp(532)/bp(532) measured by the EcoBB2F (bbp(532)) and by differencing of particulate attenuation and particulate absorption from the AC-9 (bp(532)) was a proxy of composition. Increasing values of this ratio are associated with inorganic particles [29,30]. For very small particles, this ratio is also sensitive to size, increasing for smaller particles.
- Chlorophyll to attenuation ratio Chl/cp(650) is another proxy of composition where higher values are associated with higher phytoplankton-based organic content [31].
- LISST-based size distribution spanning from 2–250 µm at 32 size bins and using a spherical kernel.
3. Results
3.1. Suspended Particulate Material (SPM)
3.2. Settling Velocities Assuming Rouse Profiles
3.3. Size
3.4. Composition
4. Discussion
4.1. Inferences from Optical Properties
4.2. Broader Advantages and Disadvantages of Optical Measurements
5. Conclusions
- Near-bottom profiles of optical properties are valuable because they sample particle populations in a region with strong gradients in turbulence and concentrations.
- Profiles with combinations of instruments can be used to make inferences about sediment dynamics in the bottom boundary layer. Resuspension of bottom material and dynamics of aggregation and disaggregation are especially important at the MVCO study site.
- Aggregation/disaggregation dynamics cannot be neglected when interpreting profiles of properties sensitive to the small particles (e.g., beam attenuation) as the flocs are both a sink and source for fine particles.
- Combinations of optical instruments provide information about suspended particle population that individual instruments cannot, because of their individual design and biases. Many of the disadvantages associated with individual optical sensors can be turned to advantages when multiple sensors are used.
Author Contributions
Acknowledgments
Data Set
Data Set License
Conflicts of Interest
Abbreviations
BBL | bottom boundary layer |
LISST | Laser In Situ Scattering and Transmission |
MVCO | Martha’s Vineyard Coastal Observatory |
OASIS | Optics and Acoustics and Stress In Situ |
ONR | Office of Naval Research |
SPM | suspended particulate mass |
USGS | USA Geological Survey |
WHOI | Woods Hole Oceanographic Institution |
References
- Hill, P.S.; Bos, E.; Newgard, J.P.; Law, B.A.; Milligan, T.G. Observations of the sensitivity of beam attenuation to particle size in a coastal bottom boundary layer. J. Geophys. Res. 2011, 116, C02023. [Google Scholar] [CrossRef]
- Downing, J. Twenty-five years with OBS sensors: The good, the bad, and the ugly. Cont. Shelf Res. 2006, 26, 2299–2318. [Google Scholar] [CrossRef]
- Mikkelsen, O.A.; Hill, P.S.; Milligan, T.G.; Chant, R.G. In situ particle size distributions and volume concentrations from a LISST100 laser particle sizer and a digital floc camera. Cont. Shelf Res. 2005, 25, 1959–1978. [Google Scholar] [CrossRef]
- Boss, E.; Taylor, L.; Gilbert, S.; Gundersen, K.; Hawley, N.; Janzen, C.; Johengen, T.; Purcell, H.; Robertson, C.; Schar, D.W.; et al. Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters. Limnol. Ocean. Meth. 2009, 7, 803–810. [Google Scholar] [CrossRef] [Green Version]
- Stramski, D.; Babin, M.; Wozniak, S. Variations in the optical properties of terrigenous mineral-rich particulate matter suspended in seawater. Limnol. Oceanogr. 2007, 52, 2418–2433. [Google Scholar] [CrossRef] [Green Version]
- Stemmann, L.; Boss, E. Plankton and particle size and packaging: From determining optical properties to driving the biological pump. Annu. Rev. Mar. Sci. 2012, 4, 263–290. [Google Scholar] [CrossRef] [PubMed]
- Stramski, D.; Boss, E.; Bogucki, D.; Voss, K.J. The role of seawater constituents in light backscattering in the ocean. Prog. Ocean. 2004, 61, 27–55. [Google Scholar] [CrossRef]
- Hill, P.S.; Bowers, D.G.; Braithwaite, K.M. The effect of suspended particle composition on particle 389 area-to-mass ratios in coastal waters. Meth.Oceanogr. 2013, 7, 95–109. [Google Scholar] [CrossRef]
- Boss, E.; Slade, W.H.; Behrenfeld, M.; Dall’Olmo, G. Acceptance angle effects on the beam attenuation in the ocean. Opt. Exp. 2009, 17, 1535–1550. [Google Scholar] [CrossRef]
- Stumpf, R.P. Sediment transport in chesapeake bay during floods: Analysis using satellite and surface observations. J. Coast. Res. 1988, 4, 1–15. [Google Scholar]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote. Sens. Envir. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Agrawal, Y.; Pottsmith, H. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 2000, 168, 89–114. [Google Scholar] [CrossRef]
- Slade, W.H.; Boss, E. Spectral attenuation and backscattering as indicators of average particle size. Appl. Opt. 2015, 54, 7264–7277. [Google Scholar] [CrossRef] [PubMed]
- Boss, E.; Twardowski, M.S.; Herring, S. Shape of the particulate beam attenuation spectrum and its relation to the size distribution of oceanic particles. Appl. Opt. 2001, 40, 4885–4893. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Hill, P.S.; Boss, E.S.; Milligan, T.G. Variability of suspended particle properties using optical measurements within the Columbia River Estuary. J. Geophys. Res. Oceans 2018, 123. [Google Scholar] [CrossRef]
- Reynolds, R.A.; Stramski, D.; Neukermans, G. Optical backscattering of particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition. Limnol. Oceanogr. 2016, 61, 1869–1890. [Google Scholar] [CrossRef]
- Briggs, N.T.; Slade, W.H.; Boss, E.; Perry, M.J. Method for estimating mean particle size from high-frequency fluctuations in beam attenuation or scattering measurements. Appl. Opt. 2013, 52, 6710–6725. [Google Scholar] [CrossRef]
- van de Hulst, H.C. Light Scattering by Small Particles; John Wiley and Sons: Dover, UK, 1981. [Google Scholar]
- Carder, K.L.; Betzer, P.R.; Eggimann, D.W. Physical, chemical and optical measures of suspended-particle concentrations: Their intercomparison and application to the West African Shelf. In Suspended Solids in Water; Gibbs, J., Ed.; Plenum: New York, NY, USA, 1974; pp. 173–193. [Google Scholar]
- Winterwerp, J.C.; Van Kesteren., W.G.M. Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Milligan, T.G.; Kineke, G.C.; Blake, A.C.; Alexander, C.R.; Hill, P.S. Flocculation and sedimentation in the ACE Basin, South Carolina. Estuaries 2001, 24, 734–744. [Google Scholar] [CrossRef]
- Hill, P.S.; Syvitiski, J.P.; Cowan, E.A.; Powell, R.D. In situ observations of floc settling velocities in Glacier Bay, Alaska. Mar. Geol. 1998, 145, 85–94. [Google Scholar] [CrossRef]
- Johnson, C.; Li, X.; Logan, B. Settling velocities of fractal aggregates. Environ. Sci. Technol. 1996, 30, 1911–1918. [Google Scholar] [CrossRef]
- Winterwerp, J.C. A simple model for turbulence induced flocculation of cohesive sediment. J. Hydraulic Res. 1998, 36, 309–326. [Google Scholar] [CrossRef]
- Winterwerp, J.C.; Manning, A.J.; Martens, C.; de Mulder, T.; Vanlede, J. A heuristic formula for turbulence-induced flocculation of cohesive sediment. Estuar. Coast. Shelf Sci. 2006, 68, 195–207. [Google Scholar] [CrossRef]
- Hill, P.S.; Voulgaris, G.; Trowbridge, J.H. Controls on floc size in a continental shelf bottom boundary layer. J. Geophys. Res. 2001, 106, 9543–9549. [Google Scholar] [CrossRef] [Green Version]
- Boss, E.; Slade, W.H.; Hill, P. Effect of particulate aggregation in aquatic environments on the beam attenuation and its utility as a proxy for particulate mass. Opt. Exp. 2009, 17, 9408–9420. [Google Scholar] [CrossRef]
- Slade, W.H.; Boss, E.; Russo, C. Effects of particle aggregation and disaggregation on their inherent optical properties. Opt. Exp. 2011, 19, 7945–7959. [Google Scholar] [CrossRef] [PubMed]
- Twardowski, M.; Boss, E.; MacDonald, J.B.; Pegau, W.S.; Barnard, A.H.; Zaneveld, J.R.V. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. J. Geophys. Res. 2001, 106, 129–142. [Google Scholar] [CrossRef]
- Loisel, H.; Meriaux, X.; Berthon, J.-F.; Poteau, A. Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea. Limnol. Oceanogr. 2007, 52, 739–752. [Google Scholar] [CrossRef] [Green Version]
- Boss, E.; Pegau, W.S.; Lee, M.; Twardowski, M.; Shybanov, E.; Korotaev, G.; Baratange, F. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, S.B.; Stramski, D.; Stramska, M.; Reynolds, R.A.; Wright, V.M.; Miksic, E.Y.; Cichocka, M.; Cieplak, A.M. Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California. J. Geophys. Res. 2010, 115, C08027. [Google Scholar] [CrossRef]
- Neukermans, G.; Reynolds, R.A.; Stramski, D. Optical classification and characterization of marine particle assemblages within the western Arctic Ocean. Limnol. Oceanogr. 2015, 61, 1472–1494. [Google Scholar] [CrossRef]
- Neukermans, G.; Loisel, H.; Meriaux, X.; Astoreca, R.; McKee, D. In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition. Limnol. Oceanog. 2012, 57, 124–144. [Google Scholar] [CrossRef]
- Hurley, A.J.; Hill, P.S.; Milligan, T.G.; Law, B.A. Optical methods for estimating apparent density of sediment in suspension. Meth. Oceanog. 2016, 17, 153–168. [Google Scholar] [CrossRef]
- Trowbridge, J.H.; Lentz, S.J. The bottom boundary layer. Ann. Rev. Mar. Sci. 2018, 10, 397–420. [Google Scholar] [CrossRef] [PubMed]
- Rouse, H. Modern concepts of the mechanics of turbulence. ASCE Trans. 1937, 102, 463–543. [Google Scholar]
- Rouse, H. An Analysis of Sediment Transportation in the Light of Fluid Turbulence; United States Department of Agriculture: Washington, DC, USA, 1939. [Google Scholar]
- Dyer, K.R. Coastal and Estuarine Sediment Dynamics; John Wiley: Chichester, UK, 1986. [Google Scholar]
- Orton, P.M.; Kineke, G.C. Comparing calculated and observed vertical suspended-sediment distributions from a Hudson River Estuary turbidity maximum. Estuarine Coastal Shelf Sci. 2001, 52, 401–410. [Google Scholar] [CrossRef]
- Kumbhakar, M.; Ghoshal, K.; Singh, V.P. Derivation of Rouse equation for sediment concentration using Shannon entropy. Phys. A 2017, 465, 494–499. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Westberry, T.K.; Behrenfeld, M.J.; Boss, E.; Slade, W.H. Significant contribution of large particles to optical backscattering in the open ocean. Biogeosciences 2009, 6, 947–967. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, C.R.; Dickhudt, P.J.; Martini, M.A.; Montgomery, E.T.; Boss, E.S. Profile Measurements and Data from the 2011 Optics, Acoustics, and Stress In Situ (OASIS) Project at the Martha’s Vineyard Coastal Observatory; United States Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Slade, W.H.; Boss, E.; Dall’Olmo, G.; Langner, M.R.; Loftin, J.; Behrenfeld, M.J.; Roesler, C.; Westberry, T.K. Underway and moored methods for improving accuracy in measurement of spectral particulate absorption and attenuation. J. Atmos. Ocean. Tech. 2010, 27, 1733–1746. [Google Scholar] [CrossRef]
- Trowbridge, J.H. On a technique for measurement of turbulent shear stress in the presence of surface waves. J. Atmos. Oceanic Technol. 1998, 15, 290–298. [Google Scholar] [CrossRef]
- Grant, W.D.; Madsen, O.S. Combined wave and current interaction with a rough bottom. J. Geophys. Res. Oceans 1979, 84, 1797–1808. [Google Scholar] [CrossRef]
- Madsen, O.S. Spectral Wave-Current Bottom Boundary Layer Flows. In Proceedings of the 24th International Conference Coastal Engineering Research Council, Kobe, Japan, 23–28 October 1994; ACSE: Reston, VA, USA, 1995. [Google Scholar]
- Fox, J.M.; Hill, P.S.; Milligan, T.G.; Ogston, A.S.; Boldrin, A. Floc fraction in the waters of the Po River prodelta. Cont. Shelf Res. 2004, 24, 1699–1715. [Google Scholar] [CrossRef]
- Wiberg, P.L.; Smith, J.D. Calculations of the critical shear stress for motion of uniform and heterogeneous sediments. Water Resour. Res. 1987, 23, 1471–1480. [Google Scholar]
- Traykovski, P.; Richardson, M.D.; Mayer, L.A.; Irish, J.D. Mine burial experiments at the Martha’s Vineyard Coastal Observatory. IEEE J. Oceanic Eng. 2007, 32, 150–166. [Google Scholar] [CrossRef]
- Dietrich, W.E. Settling velocity of natural particles. Water Resour. Res. 1982, 18, 1615–1626. [Google Scholar] [CrossRef]
- Law, B.A.; Hill, P.S.; Milligan, T.G.; Zions, V. Erodibility of aquaculture waste from different bottom substrates. Aquacult. Environ. Interact. 2016, 8, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Davies, E.J.; Nimmo-Smith, W.A.M.; Agrawal, Y.C.; Souza, A.J. LISST-100 response to large particles. Mar. Geol. 2012, 307, 117–122. [Google Scholar] [CrossRef]
- Graham, G.W.; Davies, E.J.; Nimmo-Smith, W.A.M.; Bowers, D.G.; Braithwaite, K.M. Interpreting LISST-100X measurements of particles with complex shape using digital in-line holography. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.F.; Irish, J.D.; Sherwood, C.R.; Agrawal, Y.C. Determining suspended sediment particle size information from acoustical and optical backscatter measurements. Cont. Shelf Res. 1994, 14, 1139–1165. [Google Scholar] [CrossRef]
- Russo, C. An Acoustical Approach to the Study of Marine Particles Dynamics Near the Bottom Boundary Layer. Ph.D. Thesis, University of Maine, Orono, ME, USA, 2011. [Google Scholar]
- Dyer, K.R.; Soulsby, R.L. Sand transport on the continental shelf. Annu. Rev. Fluid Mech. 1988, 20, 295–324. [Google Scholar] [CrossRef]
- McLean, S.R. On the calculation of suspended load for noncohesive sediments. J. Geophys. Res. Oceans 1992, 97, 5759–5770. [Google Scholar] [CrossRef]
- Gelfenbaum, G.; Smith, J.D. Experimental Evaluation of a Generalized Suspended-Sediment Transport Theory; AAPG: Tulsa, OK, USA, 1986; pp. 133–144. [Google Scholar]
- Pal, D.; Ghoshal, K. Vertical distribution of fluid velocity and suspended sediment in open channel turbulent flow. Fluid Dyn. Res. 2016, 48, 035501. [Google Scholar] [CrossRef]
- Sherwood, C.R.; Aretxabaleta, A.L.; Harris, C.K.; Rinehimer, J.P.; Verney, R.; Ferré, B. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST r1234). Geosci. Model Dev. 2018, 11, 1849–1871. [Google Scholar] [CrossRef]
Parameter | Maria | Spring Tide | Ophelia | Calm |
---|---|---|---|---|
bbp(650) | | | ↘ | ↘ | ~↘ |
cp(650) | ↘ | ↘ | ↘ | ↘ |
γbbp | ↗ | ↘ | ↗ | ~↗ |
γcp | ↗ | ↗ | ↗ | | |
Ds | | | ↗ | ~↗ | ~↘ |
ρa−1 | ~↘ | ↗ | ~↗ | ~↘ |
bbp(650)/bp(650) | ~↗ | ↗ | | | | |
Chl/cp(650) | ↗ | ↗ | ~↗ | ↗ |
Parameter | Maria | Spring Tide | Ophelia | Calm |
---|---|---|---|---|
bbp(650) [m−1] | 0.11(0.06) | 0.04(0.01) | 0.30(0.14) | 0.02(0.002) |
cp(650) [m−1] | 3.87(1.77) | 1.19(0.22) | 11.81(6.51) | 1.06(0.09) |
γbbp | 0.09(0.02) | −0.14(0.06) | 0.0(0.01) | 0.06(0.07) |
γcp | 0.33(0.04) | 0.43(0.04) | 0.34(0.04) | 0.42(0.01) |
Ds [µm] | 87.3(3.0) | 210.7(20.5) | 50.4(6.0) | 147.0(8.7) |
ρa−1 [m ppm−1] | 16.6(1.1) | 19.1(0.3) | 11.5(0.8) | 20.8(1.1) |
bbp(650)/bp(650) | 0.03(0.002) | 0.04(0.002) | 0.03(0.002) | 0.02(0.002) |
Chl/cp(650) [µgm−2] | 2.8(0.4) | 4.3(0.6) | 0.9(0.1) | 4.2(0.1) |
u∗wc [cm/s] | 2.3 | 2.4 | 4.1 | 0.8 |
u∗c [cm/s] | 0.6 | 0.7 | 1.8 | 0.4 |
wsbbp [cm/s] | 1.22(0.72) | 0.42(0.72) | 3.39(0.94) | 0.11(~0.0) * |
wscp [cm/s] | 1.08(0.80) | 0.52(0.66) | 3.96(0.99) | 0.22(0.95) |
© This article is a U.S. Government work and is in the public domain in the USA. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boss, E.; Sherwood, C.R.; Hill, P.; Milligan, T. Advantages and Limitations to the Use of Optical Measurements to Study Sediment Properties. Appl. Sci. 2018, 8, 2692. https://doi.org/10.3390/app8122692
Boss E, Sherwood CR, Hill P, Milligan T. Advantages and Limitations to the Use of Optical Measurements to Study Sediment Properties. Applied Sciences. 2018; 8(12):2692. https://doi.org/10.3390/app8122692
Chicago/Turabian StyleBoss, Emmanuel, Christopher R. Sherwood, Paul Hill, and Tim Milligan. 2018. "Advantages and Limitations to the Use of Optical Measurements to Study Sediment Properties" Applied Sciences 8, no. 12: 2692. https://doi.org/10.3390/app8122692
APA StyleBoss, E., Sherwood, C. R., Hill, P., & Milligan, T. (2018). Advantages and Limitations to the Use of Optical Measurements to Study Sediment Properties. Applied Sciences, 8(12), 2692. https://doi.org/10.3390/app8122692