Numerical and Experimental Study on Multi-Focal Metallic Fresnel Zone Plates Designed by the Phase Selection Rule via Virtual Point Sources
Abstract
:1. Introduction
2. Design Principle for a Multi-Focal MFZP
3. A Monochromatic, Multi-Focal MFZP
4. A Multi-Chromatic Mono-Focal MFZP
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Young, M. Zone plates and their aberrations. J. Opt. Soc. Am. 1972, 62, 972–976. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Zhu, Z.; Shi, J.; Guan, C.; Yuan, L. Multimode fiber focusing lens based on plasmonic structures. In Proceedings of the Optoelectronic Devices and Integration VI, Beijing, China, 12–14 October 2016; Volume 10019, p. 100191C. [Google Scholar]
- Wan, W.; Ma, C.; Liu, Z. Control the dispersive properties of compound plasmonic lenses. Opt. Commun. 2013, 291, 390–394. [Google Scholar] [CrossRef]
- Jia, J.; Xie, C.; Liu, M.; Wan, L. A super-resolution Fresnel zone plate and photon sieve. Opt. Laser Eng. 2010, 48, 760–765. [Google Scholar] [CrossRef]
- Kim, H.; An, H.; Kim, J.; Lee, S.; Park, K.; Lee, S.; Hong, S.; Vazquez-Zuniga, L.A.; Lee, S.Y.; Lee, B.; et al. Corrugation-assisted metal-coated angled fiber facet for wavelength-dependent off-axis directional beaming. Opt. Express 2017, 25, 8366–8385. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, S.Y.; Koo, S.; Kim, J.; Park, K.; Lee, D.; Vazquez-Zuniga, L.A.; Park, N.; Lee, B.; Jeong, Y. Theoretical study on the generation of a low-noise plasmonic hotspot by means of a trench-assisted circular nano-slit. Opt. Express 2014, 22, 26844–26853. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, W.; Li, H.; Zhu, Y.; Yu, Y. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci. Sci. Rep. 2017, 7, 1335. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.H.; Rogers, E.T.; Zheludev, N.I. Achromatic super-oscillatory lenses with sub-wavelength focusing. Light Sci. Appl. 2017, 6, e17036. [Google Scholar] [CrossRef]
- Rogers, E.T.; Savo, S.; Lindberg, J.; Roy, T.; Dennis, M.R.; Zheludev, N.I. Super-oscillatory optical needle. Appl. Phys. Lett. 2013, 102, 031108. [Google Scholar] [CrossRef]
- Wróbel, P.; Pniewski, J.; Antosiewicz, T.J.; Szoplik, T. Focusing radially polarized light by a concentrically corrugated silver film without a hole. Phys. Rev. Lett. 2009, 102, 183902. [Google Scholar] [CrossRef] [PubMed]
- Monsoriu, J.A.; Calatayud, A.; Remón, L.; Furlan, W.D.; Saavedra, G.; Andrés, P. Bifocal Fibonacci diffractive lenses. IEEE Photonics J. 2013, 5, 3400106. [Google Scholar] [CrossRef]
- Saavedra, G.; Furlan, W.D.; Monsoriu, J.A. Fractal zone plates. Opt. Lett. 2003, 28, 971–973. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, V.; Calatayud, A.; Giménez, F.; Furlan, W.D.; Monsoriu, J.A. Cantor dust zone plates. Opt. Express 2013, 21, 2701–2706. [Google Scholar] [CrossRef] [PubMed]
- Venkatakrishnan, K.; Tan, B. Interconnect microvia drilling with a radially polarized laser beam. J. Micromech. Microeng. 2006, 16, 2603–2607. [Google Scholar] [CrossRef]
- Neuman, K.C.; Block, S.M. Optical trapping. Rev. Sci. Instrum. 2004, 75, 2787–2809. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wei, Y.; Zhang, Y.; Sun, B.; Zhao, E.; Zhang, Y.; Yang, J.; Yuan, L. A novel surface plasmon resonance sensor based on fiber butt-joint technology. Sens. Actuator B Chem. 2015, 221, 1330–1334. [Google Scholar] [CrossRef]
- Kim, H.; Vazquez-Zuniga, L.A.; Kim, J.; Park, K.; Lee, D.; Hong, S.; Jeong, Y. Fiberized plasmonic Fresnel zone plate for wavelength dependent position tunable optical trapping. In Proceedings of the 11th Conference on Lasers and Electro-Optics Pacific Rim, Busan, Korea, 24–28 August 2015; p. 28E2_1. [Google Scholar]
- Ribeiro, R.S.R.; Dahal, P.; Guerreiro, A.; Jorge, P.A.; Viegas, J. Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Sci. Rep. 2017, 7, 4485. [Google Scholar]
- Moh, K.J.; Yuan, X.C.; Bu, J.; Zhu, S.W.; Gao, B.Z. Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy. Opt. Lett. 2009, 34, 971–973. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Chen, Q.D.; Zhang, J.; Tian, Z.N.; Niu, L.G.; Li, Q.S.; Wang, H.Y.; Qin, L.; Sun, H.B. Monolithic bifocal zone-plate lenses for confocal collimation of laser diodes. Opt. Lett. 2013, 38, 3739–3742. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yun, W.; Jacobsen, C. Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 2003, 424, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.J.; Michette, A.G. Imaging properties of modified Fresnel zone plates. Opt. Acta Int. J. Opt. 1984, 31, 403–413. [Google Scholar] [CrossRef]
- Gao, N.; Xie, C.; Li, C.; Jin, C.; Liu, M. Square optical vortices generated by binary spiral zone plates. Appl. Phys. Lett. 2011, 98, 151106. [Google Scholar] [CrossRef]
- Tao, S.H.; Yuan, X.C.; Lin, J.; Burge, R.E. Sequence of focused optical vortices generated by a spiral fractal zone plate. Appl. Phys. Lett. 2006, 89, 031105. [Google Scholar] [CrossRef]
- Huang, J.; Murai, Y.; Yamamoto, F. Shallow DOF-based particle tracking velocimetry applied to horizontal bubbly wall turbulence. Flow Meas. Instrum. 2008, 19, 93–105. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Shi, Z.; Zhu, A.Y.; Chen, W.T.; Sanjeev, V.; Zaidi, A.; Capasso, F. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett. 2017, 17, 1819–1824. [Google Scholar] [CrossRef] [PubMed]
- Saleh, B.E.; Teich, M.C.; Saleh, B.E. Fundamentals of Photonics, 2nd ed.; Wiley: New York, NY, USA, 2007; p. 110. [Google Scholar]
- Lerosey, G.; De Rosny, J.; Tourin, A.; Derode, A.; Montaldo, G.; Fink, M. Time reversal of electromagnetic waves. Phys. Rev. Lett. 2004, 92, 193904. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Harsha, K.S. Principles of Vapor Deposition of Thin Films, 1st ed.; Elsevier: Oxford, UK, 2006; p. 400. [Google Scholar]
- Vesseur, E.J.R.; De Waele, R.; Lezec, H.J.; Atwater, H.A.; García de Abajo, F.J.; Polman, A. Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using focused-ion-beam milling. Appl. Phys. Lett. 2008, 92, 083110. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kim, J.; An, H.; Lee, Y.; Lee, G.Y.; Na, J.; Park, K.; Lee, S.; Lee, S.Y.; Lee, B.; et al. Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Opt. Express 2017, 25, 30290–30303. [Google Scholar] [CrossRef] [PubMed]
Design Parameters | ||||||
---|---|---|---|---|---|---|
Parameters | Foci | Wavelength | Diameter | Slit Resolution | Tolerance | |
Position | Intensity | |||||
Value | 10, 15, 20 | 650 nm | 50 | 10 nm | 0.5% | 3% |
Optimized Parameters | ||||||
Parameters | Relative Intensities (I1, I2, I3) | Initial Phase-Offset (, , ) | Position | Intensity | ||
Value | 0.13, 0.36, 1 | 1.05 π, 0.70 π, 2.00 π | <0.5% | <2.9% |
Design Parameters | |||||
---|---|---|---|---|---|
Parameters | Focus Length | Wavelengths | Diameter | Slit Resolution | Tolerance |
Position | |||||
Value | 15 | 473, 532, 660 nm | 50 | 10 nm | 0.1% |
Optimized Parameters | |||||
Parameters | Relative Intensities (I1, I2, I3) | Initial Phase-Offset (, , ) | Position | ||
Value | 1, 1, 1 (Fixed) | 2.00 π, 0.92 π, 1.38 π | <0.07% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, H.; Lee, G.-Y.; Kim, J.; Lee, B.; Jeong, Y. Numerical and Experimental Study on Multi-Focal Metallic Fresnel Zone Plates Designed by the Phase Selection Rule via Virtual Point Sources. Appl. Sci. 2018, 8, 449. https://doi.org/10.3390/app8030449
Kim J, Kim H, Lee G-Y, Kim J, Lee B, Jeong Y. Numerical and Experimental Study on Multi-Focal Metallic Fresnel Zone Plates Designed by the Phase Selection Rule via Virtual Point Sources. Applied Sciences. 2018; 8(3):449. https://doi.org/10.3390/app8030449
Chicago/Turabian StyleKim, Jinseob, Hyuntai Kim, Gun-Yeal Lee, Juhwan Kim, Byoungho Lee, and Yoonchan Jeong. 2018. "Numerical and Experimental Study on Multi-Focal Metallic Fresnel Zone Plates Designed by the Phase Selection Rule via Virtual Point Sources" Applied Sciences 8, no. 3: 449. https://doi.org/10.3390/app8030449
APA StyleKim, J., Kim, H., Lee, G. -Y., Kim, J., Lee, B., & Jeong, Y. (2018). Numerical and Experimental Study on Multi-Focal Metallic Fresnel Zone Plates Designed by the Phase Selection Rule via Virtual Point Sources. Applied Sciences, 8(3), 449. https://doi.org/10.3390/app8030449