Rapid High-Resolution Wavenumber Extraction from Ultrasonic Guided Waves Using Adaptive Array Signal Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Model
2.2. Wavenumber Estimation Using the ESPRIT Algorithm
2.3. Estimation of the Number of Signals
2.3.1. Overview of the Basic Theory
2.3.2. Diagonal Loading Technique
2.3.3. Determination of the DL Factor
2.4. Experimental Setup
3. Results and Discussion
3.1. Evaluation of the Number of the Propagation Modes with DL
3.2. Experimental Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
QUS | quantitative ultrasound |
AT | axial transmission |
f–k | frequency-wavenumber |
SVD | singular value decomposition |
S-SVD | sparse singular value decomposition |
ESPRIT | estimation of signal parameters via rotational invariance technique |
SNR | signal-to-noise ratio |
MDL | minimum description length |
DL | diagonal loading |
RMSE | root mean square error |
References
- Langton, C.; Palmer, S.; Porter, R. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng. Med. 1984, 13, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Mano, I.; Horii, K.; Takai, S.; Suzaki, T.; Nagaoka, H.; Otani, T. Development of novel ultrasonic bone densitometry using acoustic parameters of cancellous bone for fast and slow waves. Jpn. J. Appl. Phys. 2006, 45, 4700–4702. [Google Scholar] [CrossRef]
- Otani, T. Quantitative estimation of bone density and bone quality using acoustic parameters of cancellous bone for fast and slow waves. Jpn. J. Appl. Phys. 2005, 44, 4578. [Google Scholar] [CrossRef]
- Raum, K.; Grimal, Q.; Varga, P.; Barkmann, R.; Glüer, C.C.; Laugier, P. Ultrasound to assess bone quality. Curr. Osteoporos. Rep. 2014, 12, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Ta, D.; Liu, C. Ultrasonic backscatter theory, method, and diagnostic instrument for cancellous bone. J. Acoust. Soc. Am. 2016, 140, 3190. [Google Scholar] [CrossRef]
- Bochud, N.; Vallet, Q.; Minonzio, J.G.; Laugier, P. Predicting bone strength with ultrasonic guided waves. Sci. Rep. 2017, 7, 43628. [Google Scholar] [CrossRef] [PubMed]
- Wear, K.A.; Nagaraja, S.; Dreher, M.L.; Sadoughi, S.; Zhu, S.; Keaveny, T.M. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro. Bone 2017, 103, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Kawano, A.; Oue, H.; Takeda, Y.; Yokoi, M.; Koretake, K.; Tsuga, K. Preoperative evaluation of bone quality for dental implantation using an ultrasound axial transmission device in an ex vivo model. Clin. Exp. Dent. Res. 2017, 3, 81–86. [Google Scholar] [CrossRef]
- Xu, K.; Ta, D.; Cassereau, D.; Hu, B.; Wang, W.; Laugier, P.; Minonzio, J.G. Multichannel processing for dispersion curves extraction of ultrasonic axial-transmission signals: Comparisons and case studies. J. Acoust. Soc. Am. 2016, 140, 1758–1770. [Google Scholar] [CrossRef] [PubMed]
- Minonzio, J.G.; Talmant, M.; Laugier, P. Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration. J. Acoust. Soc. Am. 2010, 127, 2913–2919. [Google Scholar] [CrossRef] [PubMed]
- Minonzio, J.G.; Foiret, J.; Talmant, M.; Laugier, P. Impact of attenuation on guided mode wavenumber measurement in axial transmission on bone mimicking plates. J. Acoust. Soc. Am. 2011, 130, 3574–3582. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.; Nguyen, K.C.T.; Sacchi, M.D.; Le, L.H. Imaging ultrasonic dispersive guided wave energy in long bones using linear Radon transform. Ultrasound Med. Biol. 2014, 40, 2715–2727. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.N.; Le, L.H.; Sacchi, M.D.; Nguyen, V.H.; Lou, E.H. Multichannel filtering and reconstruction of ultrasonic guided wave fields using time intercept-slowness transform. J. Acoust. Soc. Am. 2014, 136, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.N.; Guo, X.E. The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity. J. Biomech. 2004, 37, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Naili, S.; Vu, M.B.; Grimal, Q.; Talmant, M.; Desceliers, C.; Soize, C.; Haïat, G. Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission. J. Acoust. Soc. Am. 2010, 127, 2622–2634. [Google Scholar] [CrossRef] [PubMed]
- Haïat, G.; Naili, S.; Grimal, Q.; Talmant, M.; Desceliers, C.; Soize, C. Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: Application to axial transmission. J. Acoust. Soc. Am. 2009, 125, 4043–4052. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Naili, S. Ultrasonic wave propagation in viscoelastic cortical bone plate coupled with fluids: A spectral finite element study. Comput. Meth. Biomech. Biomed. Eng. 2013, 16, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.H.; Tran, T.N.; Sacchi, M.D.; Naili, S.; Le, L.H. Computing dispersion curves of elastic/viscoelastic transversely-isotropic bone plates coupled with soft tissue and marrow using semi-analytical finite element (SAFE) method. Comput. Biol. Med. 2017, 87, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Sasso, M.; Haiat, G.; Talmant, M.; Laugier, P.; Naili, S. Singular value decomposition-based wave extraction in axial transmission: Application to cortical bone ultrasonic characterization [correspondence]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 1328–1332. [Google Scholar] [CrossRef] [PubMed]
- Foiret, J.; Minonzio, J.G.; Chappard, C.; Talmant, M.; Laugier, P. Combined estimation of thickness and velocities using ultrasound guided waves: A pioneering study on in vitro cortical bone samples. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Minonzio, J.G.; Ta, D.; Hu, B.; Wang, W.; Laugier, P. Sparse SVD method for high-resolution extraction of the dispersion curves of ultrasonic guided waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1514–1524. [Google Scholar] [CrossRef] [PubMed]
- Okumura, S.; Nguyen, V.H.; Taki, H.; Haïat, G.; Naili, S.; Sato, T. Phase velocity estimation technique based on adaptive beamforming for ultrasonic guided waves propagating along cortical long bones. Jpn. J. Appl. Phys. 2017, 56, 07JF06. [Google Scholar] [CrossRef]
- Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 387–392. [Google Scholar] [CrossRef]
- Wax, M. Detection and localization of multiple sources via the stochastic signals model. IEEE Trans. Signal Process. 1991, 39, 2450–2456. [Google Scholar] [CrossRef]
- Lombardini, F.; Gini, F. Model order selection in multi-baseline interferometric radar systems. EURASIP J. Adv. Signal Process. 2005, 2005, 108784. [Google Scholar] [CrossRef]
- Huang, Y.; Ferro-Famil, L.; Reigber, A. Under-foliage object imaging using SAR tomography and polarimetric spectral estimators. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2213–2225. [Google Scholar] [CrossRef]
- Sauer, S.; Ferro-Famil, L.; Reigber, A.; Pottier, E. Physical parameter extraction over urban areas using L-band POLSAR data and interferometric baseline diversity. In Proceedings of the 2007 IEEE International IGARSS Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 5045–5048. [Google Scholar]
- Takao, K.; Kikuma, N. An adaptive array utilizing an adaptive spatial averaging technique for multipath environments. IEEE Trans. Antennas Propag. 1987, 35, 1389–1396. [Google Scholar] [CrossRef]
- Shan, T.J.; Wax, M.; Kailath, T. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 806–811. [Google Scholar] [CrossRef]
- Saarnisaari, H. TLS-ESPRIT in a time delay estimation. In Proceedings of the 1997 IEEE 47th Vehicular Technology Conference, Phoenix, AZ, USA, 4–7 May 1997; Volume 3, pp. 1619–1623. [Google Scholar]
Proposed Method with Copper Plate | Proposed Method with Bone-Mimicking Plate | ESPRIT with Fixed Threshold (−40 dB) | ESPRIT with Fixed Threshold (−30 dB) | Proposed Method with MHz | Proposed Method with MHz |
---|---|---|---|---|---|
108 | 121 | 184 | 143 | 144 | 118 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okumura, S.; Nguyen, V.-H.; Taki, H.; Haïat, G.; Naili, S.; Sato, T. Rapid High-Resolution Wavenumber Extraction from Ultrasonic Guided Waves Using Adaptive Array Signal Processing. Appl. Sci. 2018, 8, 652. https://doi.org/10.3390/app8040652
Okumura S, Nguyen V-H, Taki H, Haïat G, Naili S, Sato T. Rapid High-Resolution Wavenumber Extraction from Ultrasonic Guided Waves Using Adaptive Array Signal Processing. Applied Sciences. 2018; 8(4):652. https://doi.org/10.3390/app8040652
Chicago/Turabian StyleOkumura, Shigeaki, Vu-Hieu Nguyen, Hirofumi Taki, Guillaume Haïat, Salah Naili, and Toru Sato. 2018. "Rapid High-Resolution Wavenumber Extraction from Ultrasonic Guided Waves Using Adaptive Array Signal Processing" Applied Sciences 8, no. 4: 652. https://doi.org/10.3390/app8040652
APA StyleOkumura, S., Nguyen, V. -H., Taki, H., Haïat, G., Naili, S., & Sato, T. (2018). Rapid High-Resolution Wavenumber Extraction from Ultrasonic Guided Waves Using Adaptive Array Signal Processing. Applied Sciences, 8(4), 652. https://doi.org/10.3390/app8040652